

مهندسی صنایع و

مهندسي سيستمهاي اقتصادي اجتماعي

و مدیریت سیستم و بهره وری

تاليف مهندس محسن شايان

U^{NIT 1} What is Industrial Engineering?

Vocabulary

```
Branch/ a branch of
Deal
Deal with something / concerning with
Optimize
Process
Develop/developed/developing/development
Improve/improvement
Implement/ implementation
Evaluate/evaluation
Integrate/integration
Synthesis / synthesize
As well as/Likewise/ in like manner/ along with/ moreover/ similarly
Principle/ principal
Specify/ specification
Obtain
Underlie/ underlying
Concept/conception/ preconception
Overlap
Consider/ considerable/ considerably
Orient/ direct/ lead/ guide
```

2

iedep.com

Business-oriented Emphasize/ emphasis Extensive Profession/ proficient/ proficiency/professional Use/ usage Depend on/ independent/dependable Quantitative/Qualitative Specialty/specialist Viewpoint/ point of view/ opinion Recruiter What is Industrial Engineering?

Industrial engineering is a branch of engineering dealing with the optimization of complex processes or systems. It is concerned with the development, improvement, implementation and evaluation of integrated systems of people, money, knowledge, information, equipment, energy, materials, analysis and synthesis, as well as the mathematical, physical and social sciences together with the principles and methods of engineering design to specify, predict, and evaluate the results to be obtained from such systems or processes. Its underlying concepts overlap considerably with certain business-oriented disciplines such as Operations Management, but the engineering side tends to emphasize extensive *mathematical* proficiency and usage of quantitative methods.

Depending on the sub-specialty(ies) involved, industrial engineering may also be known as operations management, management science, operations research, systems engineering, or manufacturing, usually depending on the viewpoint or motives of the user. Recruiters or educational establishments use the names to differentiate themselves from others. In health care, industrial engineers are more commonly known as health management engineers or health systems engineers.

3

Vocabulary

Concern: to relate to; to have an influence on Integrate: to form, coordinate, or blend into a functioning or unified whole; unite Draw upon: to use as a source of supply; draw on Principle: a comprehensive and fundamental law, doctrine, or assumption Specify: to name or state explicitly or in detail; to include as an item in a specification Predict: to declare or indicate in advance; forecast; prophesy; foretell Evaluate: to determine the significance, worth, or condition of usually by careful appraisal and study; assess Obtain: to gain or attain usually by planned action or effort; acquire Facilitate: make easy or easier; ease Discipline: a field of study; a rule or system of rules governing conduct or activity Interface: to interact or coordinate harmoniously Explicit: clean-cut, definite, definitive, express, specific

Strategies

Skimming is reading quickly for a general understanding of the topic and organization of the passage.

Scanning is looking through a passage to find specific information.

Industrial Engineering is concerned with the design, improvement and installation of integrated systems of people, materials, equipment and energy. It draws upon specialized knowledge and social sciences together with the principles and methods of engineering analysis and design to specify, predict and evaluate the results to be obtained from such systems.

To be more specific, the function of an industrial engineer is to integrate people, machines, materials and information to facilitate an effective operation and to maximize productivity. Therefore, system management becomes one of the key functions of an industrial engineer.

Industrial engineering is the interfacing of people with machines. The design of a total system must include the behavioral characteristics, stress-strain relationships, load carrying energy characteristics, and motivational responses of the people who are vital links in a system in addition to the physical elements of the machines. Therefore, the uniqueness of industrial engineering is the explicit reference to people and social sciences in addition to natural sciences. Not only the design, installation, evaluation and redesign of machine systems are the major concerns of industrial engineering, but also the human factors in the system.

1- What is the main idea of the first paragraph?

- 1. Methods which are used in industrial engineering.
- 2. What industrial engineering does with methods and science.
- 3. Definition of industrial engineering.
- 4. None of the above mentioned

2- What is the main idea of the second paragraph?

- 1. Maximizing productivity
- 2. Use of industrial engineering.
- 3. The key functions of an industrial engineer.
- 4. System management as a single function

3- What author is going to say in paragraph 3?

- 1. Definition of industrial engineering
- 2. Deference between industrial engineering and other engineering disciplines.
- 3. Role of human factor in industrial engineering.
- 4. Shining function of industrial engineering.

4- According to the passage what industrial engineering is concerned with?

- 1. Designing, classification and integration.
- 2. Optimization, installation and integration.
- 3. Improvement, design and installation.
- 4. Qualification, installation and design.

5- All the options are the specific objective of industrial engineering EXCEPT....?

- 1. Designing various systems
- 2. Integrating people, machines, materials and information
- 3. Facilitate an effective operation
- 4. Maximize productivity

6- According to the passage, which one is a key function in industrial engineering?

- 1. Integration of people, machines, materials and information
- 2. Optimization
- 3. Maximizing productivity
- 4. System management

7- The uniqueness of industrial engineering is

- 1. Clear-cut reference to people and social sciences
- 2. Explicit reference to natural sciences
- 3. Unambiguous reference to the human factors
- 4. Precise reference to behavioral characteristics

$U^{_{NIT2}}$

Plant Layout

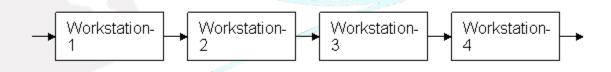
Layout Plant arrangement facility equipment furniture flow of material handling receipt raw material delivery final product line layout Product layout sequence sequentially backtrack batch production

stationary bulky combination likelihood work-in-progress(WIP) lead time confine to manpower autonomy master fulfill retrieval scratch innovative exploitation as per(in accordance with) component embodiment accrue from conventional

Definition: Plant layout refers to the arrangement of physical facilities such as machines, equipment, tools, furniture etc. in such a manner so as to have quickest flow of material at the lowest cost and with the least amount of handling in processing the product from the receipt of raw material to the delivery of the final product.

7

TYPES OF LAYOUT:


There are mainly four types of plant layout:

- (a) Product or line layout
- (b) Process or functional layout
- (c) Fixed position or location layout
- (d) Combined or group layout

PRODUCT OR LINE LAYOUT:

In this type of layout the machines and equipments are arranged in one line depending upon the sequence of operations required for the product. It is also called as line layout. The material moves to another machine sequentially without any backtracking or deviation i.e. the output of one machine becomes input of the next machine. It requires a very little material handling.

It is used for mass production of standardized products.

PROCESS LAYOUT:

In this type of layout the machines of a similar type are arranged together at one place. This type of layout is used for batch production. It is preferred when the product is not standardized and the quantity produced is very small.

FIXED POSITION OR LOCATION LAYOUT:

Fixed position layout involves the movement of manpower and machines to the product which remains stationary. The movement of men and machines is advisable as the cost of moving them would be lesser. This type of layout is preferred where the size of the job is bulky and heavy. Example of such type of layout is locomotives, ships, boilers, generators, wagon building, aircraft manufacturing, etc.

Combined layout:

A combination of process & product layout is known as combined layout.

Manufacturing concerns where several products are produced in repeated numbers with no likelihood of continuous production, combined layout is followed

Group Technology (GT)

Group Technology or GT is a manufacturing philosophy in which the parts having similarities (Geometry, manufacturing process and/or function) are grouped together to achieve higher level of integration between the design and manufacturing functions of a firm. The aim is to reduce work-in-progress and improve delivery performance by reducing lead times. GT is based on a general principle that many problems are similar and by grouping similar problems, a single solution can be found to a set of problems, thus saving time and effort. The group of similar parts is known as part family and the group of machineries used to process an individual part family is known as machine cell. It is not necessary for each part of a part family to be processed by every machine of corresponding machine cell. This type of manufacturing in which a part family is produced by a machine cell is known as cellular. The

manufacturing efficiencies are generally increased by employing GT because the required operations may be confined to only a small cell and thus avoiding the need for transportation of in-process parts

Cellular Manufacturing

Cellular manufacturing is a manufacturing process that produces families of parts within a single line or cell of machines operated by machinists who work only within the line or cell. A cell is a small scale, clearly-defined production unit within a larger factory. This unit has complete responsibility for producing a family of like parts or a product. All necessary machines and manpower are contained within this cell, thus giving it a degree of operational autonomy. Each worker is expected to have mastered a full range of operating skills required by his or her cell. Therefore, systematic job rotation and training are necessary conditions for effective cell development. Complete worker training is needed to ensure that flexible worker assignments can be fulfilled.

Passage 1

Group Technology (GT) has traditionally been a manufacturing philosophy in which parts are identified and grouped together to take advantage of their similarities in manufacturing and design. Similar parts are arranged into part families. In case of manufacturing, since each family possesses similar manufacturing characteristics, therefore the processing of each member of a family is similar. However, in case of design, Group Technology's use has been limited to standardization of parts and design retrieval only. For example, a designer faced with the task of developing a new part can use the design-retrieval system to determine if a similar part is already in existence. A simple change in an existing part would be much less time consuming than designing from scratch. But this does not contribute to the designing of innovative new products in any way. However, the advent of modern concept of functional reasoning in design provides a great opportunity for exploitation of GT classification techniques. The idea behind designing a product as per functionality is that, once the designer has been able to identify the intended function, he/she can expand it into sub-functions and subsequently map those sub-functions with components capable of fulfilling them. This thesis intends to fill the vast existing gap between functional requirements (sub-functions) and actual embodiments (workparts) which satisfy those functions. It enhances the GT classification of various parts on the basis of their functional applications. The classification provides the designers an important resource for selecting various parts of a product during the initial design phase. It expands the scope and utility of GT part coding and makes it more sensitive. Thus the benefits which accrue from this classification include: providing a design database, significant reduction in design time and effort, providing innovative design solutions, allowing maximum design freedom, avoiding design

10

duplication and encouraging standards to develop. The classification is merged with the existing GT coding systems and hence retains the advantages of a conventional GT code. The underlying concepts, development and application of the new system have been discussed in detail during the course of the thesis

Vocabulary

Attribute: ascribe to, credit with *Carry out:* put into practice, accomplish, perform *Initial:* placed at the beginning, first Investigation: probe, examination, inspection *Progress:* advance, move forward, gain, proceed Gradual: little by little, progressive Adoption: choose to take up or follow (an option or course of action). *Trace:* follow; find; investigate; follow a program procedure proposition after proposition *Batch:* group, collection, bundle Extend: stretch, pull out to its greatest possible length; enlarge, lengthen; give, bestow; reach *Publication:* the action or process of publishing something; a book or journal that is published *Component:* ingredient; part, constituent *Incorporate:* take in or include as part of a whole; constitute as a legal corporation *Set-up:* the way in which something is organized or arranged Set up: assemble; arrange; establish; operate Spectrum: broad range of connected ideas or events Manufacture: make by machine; create, make, produce; mass-produce; fabricate, invent *Establish:* set up, found; base *Codify:* reduce to code; arrange systematically *Approximately:* nearly

11

Strategies Identifying the Best Title

Sometimes it is requested to recognize the best title for the passage. The best title is one that implies what whole passage is all about.

For passages which have only one paragraph, the *Main Idea* is the best indicator of appropriate *Title*. Needless to say, for the ones which have several paragraphs, the Best Title is the option that covers all the main ideas contained in the passage.

Passage 2

The basic thinking behind Group Technology can be attributed to the Russians, who carried out initial investigations during the 1920s. The progress of GT since then and its gradual adoption in other countries has been traced by Grayson. The early work stressed the importance of industrial classification, and initial applications were limited to the medium and large batch productions. The work was extended during the war years by Mitrofanov to include workpieces produced in small batches. His major publication on Group Technology first appeared in 1959 and was translated into English in 1966. Mitrofanov proposed that it was possible to produce a theoretical composite component which incorporated all the major features of components belonging to a family, and that a machine could be tooled up to produce the composite component, thus providing the set-ups required for each component in the family.

In the early 1960s, Opitz carried out an investigation into workpiece statistics, which showed that although firms manufacture a variety of products, the spectrum of them all was remarkably similar. Based on the findings of this investigation, he established a classification system which enabled components to be codified by means of their geometrical similarity. A number of methods for classification and coding were being investigated at approximately the same time.

1- What is the main idea of the first paragraph?

- 1. What GT exactly is.
- 2. Progression of GT.
- 3. Different classifications of GT.
- 4. None of the above mentioned.

2- What is the main idea of the second paragraph?

- 1. The date GT started seriously.
- 2. Statistical Group Technology
- 3. GT change remarkably
- 4. None of the above mentioned

3- What is the best title for the passage?

- 1. Who developed GT?
- 2. Emerging of GT.
- 3. Kinds of GTs.
- 4. Use of GT.

4- Mitrofanov's major English publications first appear in......

- 1. 1920s
- 2. 1959
- 3. 1966
- 4. 1960s

5- According to the passage, which of the following statements is true?

- 1. Gradual adoption in other countries has been traced by Opitz.
- 2. The work was extended during the war years by Grayson.
- 3. Grayson established a classification system which enabled components to be codified.
- 4. Mitrofanov extended the work during the war years.

6- According to last paragraph, what is the main cause of emerging Group Technology?

- 1. Investigations showed that working in groups would have better results.
- 2. Group of technologies is needed to produce a product.
- 3. Variety of products needs a group of technologies.
- 4. The spectrum of the variety of products is notably similar.

- 7- In first paragraph, what does the author say about development of GT?
 - 1. Firstly, GT was started to develop by Russians during the war.
 - 2. During the war, developing of GT stopped temporarily.
 - 3. Initiation of GT was not by Russians.
 - 4. Development of GT was not limited to Russia.

Passage 3(Industrial Engineering 88)

The biggest challenge when implementing cellular manufacturing in a company is dividing the entire manufacturing system into cells. The issues may be conceptually divided in the "hard" issues of equipment, such as material flow and layout, and the "soft" issues of management, such as upskilling and corporate culture.

The hard issues are the matter of design and investment. The entire factory floor is rearranged, and equipment is modified or replaced to enable cell manufacturing. The cost of work stoppage during implementation can be considerable, and lean manufacturing literature recommend that implementation should be phased to minimize the impacts of such disruptions as much as possible. The rearrangement of equipment or replacement of equipment that are no flexible or reliable enough to cell manufacturing also pose considerable costs, although it may be justified as the upgrading obsolete equipment. In both cases, the cost have to be justified by the cost saving that can be realistically expected from the more flexible cell manufacturing system being introduced, and miscalculations can be disastrous.

The soft issues are more difficult to calculate and control. The implementation of cell manufacturing often involves employee training and redefinition and reassignment of jobs. Each of the workers in each sell should ideally be able to complete the entire range of tasks required from the cell, and often means being more multi-skilled than they were previously. In addition, cells are expected to be self-managing and therefore workers need to learn the tools and strategies for effective team work and management, tasks that workers in conventional factory environments are entirely unused to. At the other end of spectrum, the management will also find their job redefined, as they more "hands-off" approach to allow work cells to effectively self manage.

1. The best title for the passage could be

- 1. Cellular manufacturing system design
- 2. Costs of implementing cellar manufacturing
- 3. Challenges to implementation of cell manufacturing
- 4. Integrating cellular manufacturing and management

2. In order to reduce the costs of work stoppages,

- 1. Works are expected to be self managing
- 2. More flexible cell manufacturing are introduced
- 3. Part movement and wait time between operations are reduced
- 4. Implementation should be complemented in stages over a period of time

3. According to the third paragraph

- 1. Workers should be able to accomplish tasks required from any cell
- 2. The soft issue pose considerable challenge for cell manufacturing Implementation
- 3. Each individual work cell is optimized for a wide range of tasks
- 4. The cost of employee training are less than those of work stoppage

4. By more "hands-off" approach the author means that...

- 1. Managers will have to learn the strategies for team work
- 2. Managers must learn to perform a more oversight and support role
- 3. The management should carry out the detailed observation in behavior of workers
- 4. The management should monitor the output and interrelationship of every worker

5. The implementation of cell manufacturing involves all of the following EXCEPT.....

- 1. Upskilling
- 2. Overproduction
- 3. Redefinition of jobs
- 4. Reorganizing the manufacturing floor

$U^{_{NIT}3}$

Production planning and control

Assessment Aspect Coordinate Initial Ongoing Supplier Collapse Customer Critical Excessive Undertaking Misallocation Arena Smooth supply chain Productivity desired cost-effective breakdown collaboration Consequently marketing Trigger corporate Interpretation carry out Scope cast aside Approach maturity Purview Introduce yield Aggregate fill entail

A production (or manufacturing) planning and control (MPC) system is concerned with planning and controlling all aspects of manufacturing, including materials, scheduling machines and people, and coordinating suppliers and customers. An effective MPC system is critical to the success of any company. An MPC system's design is not a one-of undertaking; it should be

16

adaptive to respond to changes in the competitive arena, customer requirements, strategy, supply chain and other possible problems.

Production planning and control are usually used together. Planning the manufacture of products in the desired quantity and quality is a crucial issue in production management. However, even the best-conceived plans can go haywire because of delays, low inventories and machinery breakdowns. Consequently, there is a need for control over the operations to signal deviations from plans and trigger corrective measures.

There are two interpretations regarding the scope of production planning and control: 1. According to the first approach, the planning of all materials, processes and operations ending with the finished product fall under the purview of production planning and control. Inventory control, scheduling of operations and the planning of required equipment are also included. 2. The second approach views planning as an aggregate overall concept. The starting point is the sales forecast or sales orders, then production capacity assessment is done and scheduling of operations is completed.

Costs and benefits

Initial costs of establishing a production planning and control system can be high. Ongoing operational costs can also be high given the number of professionals and resources such as computers, training and space needed. Moreover, an ineffective MPC system can even lead to the collapse of the whole business because of poor customer service, excessive inventory and misallocation of material, workers and equipment. On the other hand, successful implementation of a production planning and control system can have crosscutting benefits such as appropriate level of work-in-process, smooth production, rapid delivery times, economic production lot sizes and improved labor productivity.

Production engineering

A branch of engineering that involves the design, control, and continuous improvement of integrated systems in order to provide customers with high-quality goods and services in a timely, cost-effective manner. It is an interdisciplinary area requiring the collaboration of

individuals trained in industrial engineering, manufacturing engineering, product design, marketing, finance, and corporate planning. In many organizations, production engineering activities are carried out by teams of individuals with different skills rather than by a formal production engineering department.

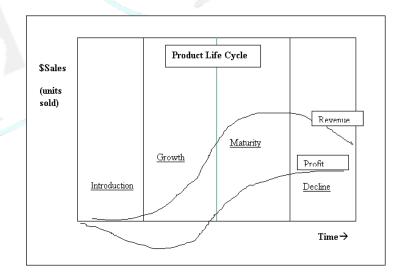
Question: Production planning and control may be defined as the of a series of functions according to a plan which will, economically utilize the plant and regulate the orderly movement of goods through their entire manufacturing cycle, from the procurement of all materials to the shipping of finished goods at a predetermined rate.

- 1) coordination/ facilities
- 2) classification/layout
- 3) organization/circumstances
- 4) discrimination/ machinery

Question: Control system is of components (electrical, mechanical, thermal, or hydraulic) that act together to maintain actual system performance close to a desired set of performance specifications.

- 1) coordination
- 2) formations
- 3) collaborations
- 4) combinations

Question: Manufacturing planning and control entails the(1)...... and allocation of limited resources to production activities so as to satisfy customer demand over a specified(2)...... As such, planning and control problems are inherently optimization problems, where the objective is to develop a plan that meets demand at minimum cost or that fills the demand that maximizes profit. The underlying optimization problem will vary due to differences in the manufacturing and market context.


1) 1- app	plication 2	- acquisition	3- optimization	4- combination
2) 1- tim	e horizon 2	- life span	3- life cycle	4- deadline

Industrial Engineering (81)

Products are born. They live and they die. They are cast aside by a changing society. It may be helpful to think of product's life as divided into four phases of introduction, growth, maturity, and decline.

Product life cycles may be a matter of few hours (a newspaper), months (seasonal fashions and personal computer), years (Betamax video recorders), or decades (Volkswagen Beetle). Regardless of the length of the cycle, the task for the operations manager is the same: to design a system that helps introduce new products successfully. If the operations function cannot perform effectively at this stage the firm may be saddled with losers- products that cannot be produced efficiently and perhaps not at all. The POM in Action box "Cannibalism at Tandem Computer" indicates just how vicious the product life cycle can be.

The following figure shows the four life cycles and the relationship of product sales, costs, and profit over the life cycle of a product. Note that typically a firm has a negative cash flow while it develops a product. When the product is successful, those losses may be recovered. Eventually, the successful product may yield a profit to its decline.

1- Having been developed, a product

- 1) Is born, lives, and dies
- 2) lives for a while and dies
- 3) continues the process of development
- 4) improves to higher cycles of life and death

- 1) a product's life depends on its characteristics
- 2) new areas of need emerge as the societies change
- 3) a product's life determines a society's evolution
- 4) new societies form as the rate of production changes

3- It can be concluded from the text that

- 1) organizations are authorized to change the order of introduction, growth, maturity, and decline
- 2) operations managers do not usually participate in the introduction of new products
- 3) an organization cannot survive without introducing new products
- 4) most products do not undergo periods of decline

4- As the figure shows

- 1) one developed, a product may bring about a negative cash flow
- 2) a substantial portion of sales occur prior to maturity
- 3) the profile that a successful product yields is fleeting
- 4) negative cash flow may also occur after maturity

5- Which of the following would be a good title for this passage?

- 1) Product Life Cycles
- 2) Products Are Born
- 3) Operations Function
- 4) Operations Manager

Vocabulary

Continuous: uninterrupted, unbroken; successive

Competitive: involving competition; tending to compete, desiring competition

Availability: accessibility, attainability

 Destructive: ruinous, tending to destroy

 Inspection: official examination, review check-up, probe, exploration, investigation; assessment, appraisal

 Assess: estimate, appraise

 Arbitrarily: wantonly, based on random choice

 Warrant: authorize; justify, entitle; empower; permit; sanction

 Interval: space of time between two events or actions; break, pause, intermission

 Determine: decide, settle; conclude; cause, affect

 Govern: rule; control; manage, administrate; supervise; regulate

 Diagnostic: oncerned with the diagnosis of illness or other problems

 Prognostic: predicting the likely course of a disease or ailment

 Protocol: conventions, rules of conduct

 Precision: exactness, accuracy

 Consequence: result, outcome; importance

 Applicable: suitable, appropriate; feasible

Strategies

Locating reference

References are words in a passage that other words refer to. Pronouns such as *they* and *those* refer to nouns elsewhere in the passage. These nouns are the referents of the pronouns. The noun referents are the words that the pronouns <u>replace</u>.

Usually the referent is mentioned before the pronoun in the passage, often immediately before it, but sometimes the referent appears after the pronoun. The referent may be in the same sentence as the pronoun, or it may be in another sentence.

Word such as this, that, many and some can also have noun referents in a passage. The referent may be in the same sentence as referring word, or it may be in another sentence.

In a continuous growing global market productivity is playing a key role to stay competitive, for any manufacturing company. Productivity can be achieved through availability, and availability can be increased through adopting the efficient maintenance practices, by focusing on different types of maintenance and strategies.

Condition based Maintenance or predictive maintenance, uses primarily non destructive testing techniques, visual inspection, and performance data to assess a machinery condition. It replaces arbitrarily timed maintenance tasks with an appropriate maintenance task at only when warranted

by equipment condition. Condition-monitoring maintenance task intervals must be properly understood and task intervals should be determined based on the expected P-F interval. The P-F interval governs the frequency with which the predictive task must be done. Technological advances are accepted and applied to CBM systems, <u>which</u> includes improved knowledge of failure mechanisms, advancements in failure forecasting techniques, advancements in monitoring and sensor devices, advancements in diagnostic and prognostic software, acceptance of communication protocols, developments in maintenance software applications and computer networking technologies.

The measurement precision and sensitivity of the CM technique being used, need to be understood because <u>they</u> affect the reaction time available to reduce or eliminate the consequences of the functional failure. Condition monitoring maintenance tasks must be applicable and cost effective.

1- What is the main idea of the first paragraph?

- 1. Globalization is growing fast.
- 2. Maintenance influences productivity.
- 3. Productivity is dependent on availability.
- 4. Productivity is no more important.

2- What is the main idea of the second paragraph?

- 1. Brief definition of CBM
- 2. Technologies which are used in CBM.
- 3. Suitable condition for implementing CBM.
- 4. Introducing CBM as a key role in productivity.

3- What is the best title for the passage?

- 1. Condition based Maintenance
- 2. Preventive Maintenance
- 3. Maintenance
- 4. Productivity

4- In second paragraph, "it" (underlined) refers to.......

- 1. non destructive testing
- 2. visual inspection
- 3. machinery condition
- 4. predictive maintenance

5- The word "which" in paragraph two refers to

- 1. CBM systems
- 2. technological advances
- 3. techniques
- 4. improved knowledge

6- In last paragraph, "they" (underlined) refers to......

- 1. measurement precision and sensitivity
- 2. CM technique
- 3. functional failure
- 4. protocols

7- Author believes

- 1. productivity will result in efficient maintenance by availability
- 2. availability will result in productivity by efficient maintenance
- 3. productivity will result in availability by efficient maintenance
- 4. availability will result in efficient maintenance by Productivity

8- According to the passage, maintenance tasks in CBM......

- 1. is arbitrarily
- 2. is orderly
- 3. is at only when warranted by equipment condition
- 4. is by statistical distributions

9- According to the passage, which one is true?

- 1. Technological advances have nothing to do with CBM.
- 2. Computers are completely useless in CBM.
- 3. Statistical analysis has a major role in CBM.
- 4. Relatively, computers have an important role on CBM.

10- According to the passage, which one is true?

- 1. Precision of CM technique affects the elimination of functional failure.
- 2. Condition monitoring maintenance tasks are always cost effective.
- 3. Both of them.
- 4. None of them.

U^{NIT 4} System definition & concepts

Interact Obtainable **Baselines** Track Viable Throughout Construct(n) Holistic Coherent Cohesive Verification Validation Retirement value added beyond primarily interconnected stakeholder wherein

dominate perspective opposing multiple instinct expense probe tag prescribe trade preliminary interface

System is a set of interacting or interdependent components forming an integrated whole. A system is a set of elements and relationships which are different from relationships of the set or its elements to other elements or sets.

A "system" is a construct or collection of different elements that together produce results not obtainable by the elements alone. The elements, or parts, can include people, hardware, software, facilities, policies, and documents; that is, all things required to produce system-level results.

Systems engineering is an interdisciplinary field of engineering that focuses on how complex engineering projects should be designed and managed over the life cycle of the project. Issues such as logistics, the coordination of different teams, and automatic control of machinery become more difficult when dealing with large, complex projects. Systems engineering deals with work-processes and tools to handle such projects, and it overlaps with both technical and human-centered disciplines such as control engineering, industrial engineering, organizational studies, and management.

Systems engineering management is accomplished by integrating three major activities:

• Development phasing that controls the design process and provides baselines that coordinate design efforts,

• A systems engineering process that provides a structure for solving design problems and tracking requirements flow through the design effort, and

• Life cycle integration that involves customers in the design process and ensures that the system developed is viable throughout its life.

passage 1

Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. A "system" is a construct or collection of different elements that together produce results not obtainable by the elements alone. The elements, or parts, can include people, hardware, software, facilities, policies, and documents; that is, all things required to produce system-level results. The results include system-level qualities, properties, characteristics, functions, behavior, and performance. The value added by the system as a whole, beyond that contributed independently by the parts, is primarily created by the relationship among the parts; that is, how they are interconnected. It is a way of looking at the "big picture" when making technical decisions. It is a way of achieving stakeholder functional, physical, and operational performance requirements in the intended use environment over the planned life of the systems. In other words, systems engineering is a logical way of thinking.

Systems engineering is the art and science of developing an operable system capable of meeting requirements within often opposed constraints. Systems engineering is a holistic, integrative discipline, wherein the contributions of structural engineers, electrical engineers, mechanism

designers, power engineers, human factors engineers, and many more disciplines are evaluated and balanced, one against another, to produce a coherent whole that is not dominated by the perspective of a single discipline.

Systems engineering seeks a safe and balanced design in the face of opposing interests and multiple, sometimes conflicting constraints. The systems engineer must develop the skill and instinct for identifying and focusing efforts on assessments to optimize the overall design and not favor one system/subsystem at the expense of another. The art is in knowing when and where to probe. Personnel with these skills are usually tagged as "systems engineers." They may have other titles such as lead systems engineer, technical manager, and chief engineer.

Question. A "system" is a construct or collection of different elements that together produce results not obtainable by the alone.

1) workers2) establishers3) combinations4) elements

Question. Systems engineering is a, integrative discipline, wherein the contributions of structural engineers, electrical engineers, mechanism designers, power engineers, human factors engineers, and many more disciplines are evaluated and balanced, one against another, to produce a whole that is not dominated by the perspective of a single discipline.

- 1) holistic/ coherent
- 2) individual/ cohesive
- 3) method/ inherent
- 4) combined/intrinsic

Question. The systems engineer will usually play the key role in leading the development of the system, defining and allocating requirements, balancing technical risk between systems, defining and assessing interfaces, providing oversight of verification and activities, as well as many other tasks.

- 1) regulation/validation
- 2) justification/ organization
- 3) stabilization/organization
- 4) architecture/validation

Question. The product realization processes are applied to each operational/mission product in the system structure starting from the lowest level product and working up to level integrated products. These processes are used to create the design solution for each product and to verify, validate, and transition up to the next hierarchical level products that satisfy their design solutions and meet stakeholder as a function of the applicable life-cycle phase.

- 1) toppest/limitation
- 2) higher/ expectations
- 3) customer/ requirement
- 4) engineering/interests

Vocabulary

 Apply: make a request; implement; put to use; enforce

 Build: construct, create; energize, increase intensity

 Capture: entrap, take prisoner

 Convey: carry, transport; bear, transmit; impart, disclose

 Cradle: hold gently and protectively

 Questionnaire: document containing a list of questions to be answered

 Context: overall situation, background

 Interpret: clarify, elucidate:

 Emerge: appear, come out, be revealed

 Executive: manager

 Illustrate: demonstrate, exemplify; clarify; embellish, depict with pictures or words; elucidate

 Survive: continue to live or exist

 Particularly: especially; specifically

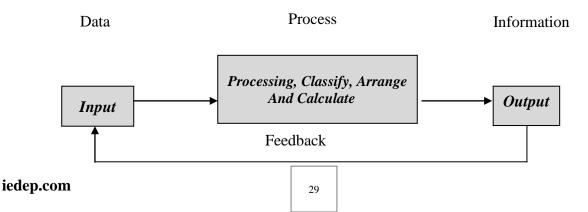
Implementation: execution, carrying out

Strategies Identifying restatements

To answer some questions in the exam, you need to read a part of passage to see which option is close to a special notion or is a *restatement* of a point in the passage.

Selecting keywords will help you to answer these kinds of questions. Search the keyword in the passage then compare the sentence_(s) to find a correct option.

Passage 2


Management information systems (MIS) are applying computer-base for managing information in organizations for management roles such as interpersonal roles, informational roles and decisional roles. MIS is compounded of theories of computer science and management science. These theories build systems and program utilization. Normally, MIS is integrated systems of users and machines (computers) with aiming to provide organizations' information for operation, management and decision-making. The 5Cs are processes to change data into information. They consist of capturing information, conveying, creating, cradling and communicating. The information must have accuracy and verification, completeness, timeliness and relevance. MIS can be divided by using of each organization level like operational – level systems, knowledge – level systems, management – level systems and strategic – level systems.

Data mean any facts of persons, objects and places that are collected from observations, questionnaires, and measurements. Data can be context and figures which are true. False context and figures are useless like trash that nobody needs it. If an organization applies false data, it may get a wrong way or it cannot solve a problem. Sometimes, we call data as raw data because they're unused or inappropriate for users.

When data have been recorded, classified, and organized, related or interpreted within a framework so that meaning emerges, they become information. There are activities involved in turning data into information, and these activities are known as process. In briefly, information means outputs of processed data. Therefore, users can apply it. For example, an executive requires total sales of each product in the last year as a chart. Because he needs summarized data for planning sales (It's easier and quicker to understand the chart information than raw data of each product). In another example, teachers are grading each student by using total scores. The figure 1 illustrates the data and information.

Figure 1

Data and Information

At the present, organizations realize that information is important as a property. It can add value to organizations. As well as, it helps organizations to survive among intensive competition. Therefore, organizations need information for management. Particularly, information must be a system to implementation for adding value of organizations. Each organization must manage information by systematically collecting. Then, there will be sending, receiving and analyzing information.

Due to a lot of information in organizations, organizations use information technologies (IT) to manage information. Information technologies are applying science that is used for managing information. They are both hardware and software such as computers, cables, magnetic taps, CDs, monitors, operating systems, application software, signal and so on. Information technologies, particularly computer-base, systemize information in organizations. Therefore, users can quickly and easily adopt information. Information technologies can process data to be required information and sending receiving information.

1- According to the passage, components of MIS are:

- 1. Decision & Management science
- 2. IT& Decision science
- 3. IT& Management science
- 4. Computer & Management science

2- Author claims that the purpose of integration in MIS is:

- 1. Having smooth organization's information flow.
- 2. Convenience in managing various parts of organization.
- 3. Providing organization's information for operations.
- 4. Scattering information across the organization.

3- According to the passage, organizations are divided to Levels.

- 1. operational, knowledge, inventory
- 2. strategic, management, operational
- 3. information, management, strategic
- 4. information, data, decision

4- According to the second paragraph, how should be the precision of data to get used?

- 1. Data should be completely true.
- 2. A little imprecision can be ignored.
- 3. Precision of data is unimportant.
- 4. There is a specified tolerance for precision.

5- According to the passage, information can be obtained......

- 1. through observations, questionnaires, and measurements
- 2. by Design Of Experiments(DOE)
- 3. by management information system
- 4. through recording, classifying, interpreting data

6- Why information has importance for organizations?

- 1. Because information is property.
- 2. Because it can add value.
- 3. Because it helps to survive among intensive competition.
- 4. All the statements are true.

7- According to the passage, why we need a system of information?

- 1. Because of accessibility of systems.
- 2. Because of accuracy of systems.
- 3. So that can add value.
- 4. There are a lot of privileges for systems that can help us in decision making.

8- Why IT is getting used in organizations?

- 1. Due to lots of facilities bring about.
- 2. Due to a lot of information in organizations.
- 3. Due to optimize time in processes.
- 4. Due to save costs.

9- According to the passage.....

- 1. Magnetic taps are not used in IT because they are old-fashioned.
- 2. IT is related to soft wares.
- 3. IT is in computer discipline not in any other ones.
- 4. IT implements both hardware and software.

10- According to the passage which one is true?

- 1. Information means outputs of processed data.
- 2. The 5Cs are processes which change information into data.
- 3. Data can be context and figures which are almost true.
- 4. None of them.

Passage 3(system 87)

In looking for more recent and more specific sources for the systems approach, on the other hand, there are two in particular that stand out. First is the general field of communications, particularly commercial telephony, where systems engineering first appeared as an explicit discipline in its own right. Traces of the systems approach are to be found in telephone engineering at least as far back as the beginning years of the century, and systems ideas were fairly common in telephony by the 1920s and '30s. When bell telephone laboratories, the research arm of the American Telephone

Telegraph Company was officially incorporated in 1925. Its two principal engineering divisions were called respectively Apparatus Development and systems Development. A complete formal doctrine of the role of systems engineering, however, first emerged in the years after World War II as part of an effort to redefine the policy and structure of the research and development. This doctrine set the engineering effort on a level of logical parity with the research and development efforts and made it of almost comparable actual size, at least with research. The system's engineer had a multitude of functions, with special emphasis on effective utilization of scientific and technical advances in planning new communications systems. This particular set of ideas, of course, reflected the special needs of telephony. Nevertheless, as an example and a point of departure it had a wide effect. It seems to be one of the reasons why so esoteric a subject as systems engineering advanced as rapidly as it did.

1- The passage is discussing the systems approach in regard to its								
1) effects on other	disciplines	2) areas of inquiry i	2) areas of inquiry it involves					
3) functions		4) genesis	4) genesis					
2- By "two" in line 2 the author means two								
1) fields	2) sources	3) systems	4) approaches					
3- Where in the passage does the author start to discuss the second source of the subject of								
the passage?								
1) Line 5	2) line 9	3) line 11	4) line 17					
4- According to the passage, all of the following are true about systems approach EXCEPT								
that it								
1) progressed at a slow pace								
2) is very specialized								
3) fulfils a myriad of	functions							
4) can be traced to the field of communications.								

J^{NIT 5} **Decision Theory**

Assist Rational/rationale Approach Determine Forecast Price(n;v) Crop Projection Broad identify relevant rationality normative prescriptive accuracy methodology comprehensive axiomatic violation descriptive

hypothesis/ hypotheses Furthermore/ further Assumption prescription in practice aid merely conflict cooperation lay out preference finite describe evaluative priority for instance

Decision science is essentially the science of providing statistical, mathematical and/or numerical models and techniques in order to assist in making complex decisions. It involves a systematic, rational approach to problem solving and can be used to determine close to optimal answers to problems, or to examine and compare the outcomes of different decisions. These skills are applied to anything, from weather forecasting to pricing strategies, new financial services and crop projections. Decision science places a strong emphasis on mathematical modeling and programming, data analysis and applied statistics, while also providing a solid foundation in the broader economic and management environment. The emphasis is on attaining the ability to perform complex decision-making in areas such as operations and financial management, manufacturing and logistics. **Operations research** (also referred to as **decision science** or **management science**) is an interdisciplinary mathematical science that focuses on the effective *use* of technology by organizations. In contrast, many other science & engineering disciplines focus on technology giving secondary considerations to its use.

Decision theory in economics, psychology, philosophy, mathematics, and statistics is concerned with identifying the values, uncertainties and other issues relevant in a given decision, its rationality, and the resulting optimal decision. It is very closely related to the field of game theory.

Most of decision theory is normative or prescriptive, *i.e.*, it is concerned with identifying the best decision to take, assuming an ideal decision maker who is fully informed, able to compute with perfect accuracy, and fully rational. The practical application of this prescriptive approach (how people *ought to* make decisions) is called decision analysis, and aimed at finding tools, methodologies and software to help people make better decisions. The most systematic and comprehensive software tools developed in this way are called decision support systems.

Since people usually do not behave in ways consistent with axiomatic rules, often their own, leading to violations of optimality, there is a related area of study, called a positive or descriptive discipline, attempting to describe what people will actually do. Since the normative, optimal decision often creates hypotheses for testing against actual behavior, the two fields are closely linked. Furthermore it is possible to relax the assumptions of perfect information, rationality and so forth in various ways, and produce a series of different prescriptions or predictions about behavior, allowing for further tests of the kind of decision-making that occurs in practice.

Statistical decision theory

Until a few years ago scientific aids to business management were used only when dealing with very specific problems such as inventory control. Recently, however, statistical decision theory has been developed and has been shown to have rather wide application to business management problems. It is this wide applicability that has made statistical decision theory so attractive to managers. With due respect to its complexities, the basis of the managerial process is decision making. Statistical decision theory is merely a description - written in mathematical terms -of this aspect of the management process. As such, it is a valuable aid to scientific management. Mathematical notation in no way makes the applicability of statistical decision theory less general. Instead, it simplifies application and understanding.

Game theory is the formal study of conflict and cooperation. Game theoretic concepts apply whenever the actions of several agents are interdependent. These agents may be individuals, groups, firms, or any combination of these. The concepts of game theory provide a language to formulate, structure, analyze, and understand strategic scenarios.

- 1) interactive/ decision problem
- 2) controversial/monogamy
- 3) conflicting/ noncooperative game
- 4) cooperative/operational research

Question2. A major part of decision making involves the analysis of a finite set of described in terms of some evaluative criteria. These criteria may be benefit or cost in nature. Then the problem might be to rank these alternatives in terms of how attractive they are to the decision maker(s) when all the criteria are considered Another goal might be to just find the best alternative or to determine the relative total priority of each alternative (for instance, if alternatives represent projects competing for funds) when all the criteria are considered simultaneously. Solving such problems is the focus of multi-criteria decision analysis (MCDA) also known as multi-criteria decision making (MCDM).

1- 1) decisions	2) criterion	3) alternatives	4) criteria
2- 1) totally	2) spontaneously	3) reciprocally	4) simultaneously

Question3. Some decisions are difficult because of the need to how other people in the situation will respond to the decision that is taken. The analysis of such social decisions is more often treated under the label of, rather than decision theory.

- 1) set into account/ operational research
- 2) take into account/ game theory
- 3) take into consideration/ operational research
- 4) set into consideration/ game theory

Vocabulary

Fundamental: basic, elemental; essential

Typically: characteristic of a particular person or thing

Encounter: meet by chance; face, meet with (difficulties, hardship, etc.)

Property: possessions, belongings; estate, assets; ownership; characteristic, attribute

Correlation: mutual relation, mutual connection (between two or more things); similarity

Advance: progress, move forward; promote; propose, suggest

Invariant: constant, unchanging amount

Significantly: remarkably, outstandingly, importantly

Straightforward: frank, candid; sincere; easy to do or understand

Accurate: precise, exact

Conclusion: end; final decision; deduction

Strategies

Identifying negative facts

You might be asked about what is NOT mentioned in the passage or what is NOT true according to the passage. It means that three of the options are true and the other one is not. In this case, you should read the options first and then match the options against the information. Usually the options are related to a specific part of the passage otherwise you should skim whole the body of text to compare options against the regarding fact.

Passage1

Economic decisions differ in a fundamental way from the types of decisions typically encountered in engineering design. In a design situation, the engineer uses known physical properties, the principles of chemistry and physics, engineering design correlations, and engineering judgment to arrive at a workable and optimal design. If the judgment is <u>sound</u>, the calculations are done correctly, and we ignore technological advances, the design is time invariant. In other words, if the engineering design to meet a particular need is done today, next year, or in five years time, the final design will not change significantly.

In considering economic decisions, the measurement of investment attractiveness is relatively straightforward. However, information required in such evaluations always involve predicting or

forecasting product sales, product selling price, and various costs over some future time frame- 5 years, 10 years, 25 years, etc.

All such forecasts have two things in common. First, they are never completely accurate when compared with the actual values realized at future times. Second, a prediction or forecast made today is likely to be different than one made at some point in the future. It is this ever-changing view of the future that can make it necessary to revisit and even change previous economic decisions. Thus, unlike engineering design outcomes, the conclusions reached through economic evaluation are not necessarily time invariant. Economic decisions have to be based on the best information available at the time of the decision and a thorough understanding of the uncertainties in the forecasted data.

In manufacturing, engineering is involved in every detail of producing goods, from conceptual design to shipping. In fact, engineering decisions account for the major (some say 85%) of product costs. Engineers must consider the effective use of capital assets such as buildings and machinery. One of the engineer's primary tasks is to plan for the acquisition of equipment (capital expenditure) that will enable the firm to design and produce products economically. With the purchase of any fixed asset, equipment for example, we need to estimate the profits (more precisely, the cash flows) that the asset will generate during its service period. In other words, we have to make capital-expenditure decisions based on predictions about the future. Suppose, for instance, that you are considering the purchase of a deburring machine to meet the anticipated demand for hubs and sleeves used in the production of gear couplings. You expect the machine to last 10 years. This purchase decision thus involves an implicit 10-year sales forecast for the gear couplings, which means that a long waiting period will be required before you will know whether the purchase was justified.

An inaccurate estimate of asset needs can have serious consequences. If you invest too much in assets, you incur unnecessarily heavy expenses. Spending too little on fixed assets is also harmful. For then your firm's equipment may be too obsolete to produce products competitively, and without an adequate capacity, you may lose a portion of your market share to rival firms. Regaining lost customers involves heavy marketing expenses and may even require price reductions or product improvements, both of which are costly.

1- What is the main idea of the first paragraph?

- 1. Fundamental of economic decision.
- 2. Fundamental of engineering design.
- 3. Time credit of engineering design.
- 4. Distinction of economic decision and industrial design.

2- What is the main idea of the third paragraph?

- 1. Economic decisions reached by economic evaluations are necessarily time invariant.
- 2. Economic evaluations are valid forever.
- 3. Conclusions obtained by economic evaluations are not necessarily time invariant.
- 4. Time has nothing to do with economic evaluations.

3- What is the main idea of the last paragraph?

- 1. Making precise estimation will help production.
- 2. Spending too little on fixed assets cannot have serious consequences.
- 3. Inaccurate estimations of asset needs can improve competitiveness.
- 4. All the options.

4- Which one is the best title for the passage?

- 1. Estimation in production.
- 2. Engineering economy.
- 3. Economic decision.
- 4. All the options.

5- All the following are used in design situation EXCEPT.....

- 1. physical properties
- 2. principles of chemistry and physics
- 3. engineering design correlations
- 4. economic judgments to arrive at workable design

6- According to the passage, all of statements are true EXCEPT.....

- 1. Design is time invariant
- 2. Economic decisions are not time invariant
- 3. Forecasts are accurate when compared with the actual values realized at future times
- 4. Forecast made today is likely to be different than one made at some point in the future

7- According to the passage, it is NOT true that

- 1. engineers have to make capital-expenditure decisions based on predictions
- 2. economic decision is not an engineering task
- 3. engineer's primary tasks are to plan for the acquisition of equipment
- 4. an inaccurate estimate of asset needs can have serious consequences

8- All of the following are reasons for importance of accurate estimate EXCEPT

- 1. investing too much in assets
- 2. incurring unnecessarily heavy expenses
- 3. defect in inventory
- 4. losing competitiveness
- 9- "Sound" in line 4 means:
 - 1. clear

2. loud

3. voice

4. valid

Passage 2(Industrial Engineering 89)

Operational Research is the science of planning and executing an operation to make the most economical use of the resources available. The operation can be as simple as making a cup of coffee or as complicated as scheduling the movements of a fleet of oil tankers around the world. It can be a project which will be undertaken only once, like the construction of a particular building, or a regularly repeated activity like the weekly ordering of stock in a shop. In each case the manager has to organize labor, equipment and materials in order to achieve a certain objective, usually the maximization of profit. Operational Research techniques attempt to model such real-world systems, either on paper or in a computer, so that their performance can be optimized with respect to an appropriate set of criteria.

The history of operational Research is not a long one although its origins can be traced back to the industrial Revolution. Most of the ideas were not developed until the Second World War when the British and American Armed Forces found themselves mounting large scale operations, many thousands of miles from their home bases. It because necessary to study the logistics of moving quantities of men, weaponry, vehicles and supplies over long distances in a coordinated fashion. Even in the fighting itself a mathematical approach was used to find the optimum military strategies.

1. The passage does NOT imply that the manager:

- 1) likes the construction of a particular building
- 2) tries to model real-world systems
- 3) organizes labor, equipment and materials.
- 4) uses a set of criteria.

2. According to the passage, the word "optimum" means:

1) maximinisation 2) minimization

3) maximization

4) most favorable

3. The passage implies that:

- 1) Operational Research is like the construction of a building
- 2) Operational Research developed in second World War
- 3) Operational Research related only to military activities
- 4) Operational Research always maximizing the profit

4. According to the passage, "Scheduling" is:

- 1) planning for raw material2) planning for manpower
- 3) planning for equipment 4) planning for time

5. What is the best title for this passage?

1) Optimization Techniques
 2) Operational Research
 3) Industrial Revolution
 4) Military strategies

U^{NIT 6} Quality

Superset Roughly Stuff Trivial Verify Weird Continually regular interval workload periodically side effect stake communicate corporate extend

disseminate functionality legitimacy professionalism evaluate motivated profitability integrative premise capitalize exceed cross-functional commit

Quality control

Quality control describes the directed use of testing to measure the achievement of a specified standard. Quality control is a formal use of testing. Quality control is a superset of testing, although it often used synonymously with testing. Roughly, you test to see if something is broken, and with quality control you set limits that say, in effect, if this particular stuff is broken then whatever you're testing *fails*.

Yet another way of looking at the difference between *testing* and *quality control* is to consider the difference between a test as an event and a test as a part of a system. For example, let's say our test is the measurement of your ability to assemble a jigsaw puzzle in one hour. We test you today, and you complete the puzzle in fifty-eight minutes, so you pass. This seems pretty trivial, but says that there is some need in your life requiring you to solve puzzles quickly: we tested you once, but we must verify that you can meet this weird requirement continually over time. The solution is to test you at regular intervals, which will allow us to see if you can still be successful when under stress, when you haven't slept, when your workload is high — our quality control approach to this issue says "you must finish puzzle in one hour or less" and "we will test this requirement periodically over time". And as a side effect of this quality control testing, you might find that you are more likely to *improve* in your puzzle solving skills because of the repeated practice; this is the beginning of a shift to quality assurance.

A structured quality control program becomes necessary when the stakes rise: your site is supposed to make money, or communicate a corporate message, or extend a brand, or disseminate important information. Quality control also becomes necessary when the team grows, or you partner with more companies, or your site gets more visitors. You need quality control as soon as it becomes important to *prove*, through the appearance and functionality of your web site, that your site has the legitimacy and professionalism to stand behind its message.

QFD

Quality Function Deployment (QFD) is a unique quality tool that allows businesses to plan and design products with the customers' needs in mind. QFD is a structured method for product or service planning. QFD lets a project team specify the customers' needs and then evaluate how the organization is meeting those needs. By using QFD, a business is motivated to focus on its customers and translate customer requirements into internal product specifications. With good initial requirements the customer obtains a higher quality product in a shorter time.

QFD is not a quality tool itself, but rather a visual-planning tool that helps to improve quality. When used to focus on the customer's needs early in the design, the team responsible for the development and introduction of the product finds that fewer changes are required after introduction into the market. When QFD is correctly utilized, it creates a closed loop that lowers costs and increases quality, timeliness, productivity, profitability, and market share.

TQM

Total quality management or TQM is an integrative philosophy of management for continuously improving the quality of products and processes. It is used around the world.

TQM functions on the premise that the quality of products and processes is the responsibility of everyone who is involved with the creation or consumption of the products or services offered by an organization. In other words, TQM capitalizes on the involvement of management, workforce, suppliers, and even customers, in order to meet or exceed customer expectations. Considering the practices of TQM as discussed in six empirical studies, Cua, McKone, and Schroeder (2001) identified the nine common TQM practices as cross-functional product design, process management, supplier quality management, customer involvement, information and feedback, committed leadership, strategic planning, cross-functional training, and employee involvement.

ISO

The ISO 9000 family of standards relate to quality management systems and are designed to help organizations ensure they meet the needs of customers and other stakeholders. The standards are published by ISO, the International Organization for Standardization and available through National standards bodies. ISO 9000 deals with the fundamentals of quality management systems, including the eight management principles on which the family of standards is based. ISO 9001 deals with the requirements that organizations wishing to meet the standard have to fulfill.

Third party certification bodies provide independent confirmation that organizations meet the requirements of ISO 9001. Over a million organizations worldwide are independently certified, making ISO 9001 one of the most widely used management tools in the world today.

Question1. Bias is a measure of systematic or error. It may be a result of the method, itself, or the lab's use or interpretation of the method. Results that are lower or higher than the true value reflect high bias.

- 1) inherent/ consistently 2) coherent/ continually
- 3) cohesive/exceptionally 4) precise/ unusually

Question2. Since variability can only be in statistical items, statistical methods play a central role in quality improvement efforts. In the application of statistical methods to quality engineering, it is fairly typical to classify data on quality characteristics as either attributes or variables data.

1) prescribed 2) transcribed 3) described 4) scribed

Question3. Quality assurance is the set of activities that the quality levels of products and services are properly and that supplier and customer quality issues are properly resolved. Documentation of the quality system is an important component.

1) insures/preserved

2) determines/sustained

3) assures/protected

4) ensures/ maintained

- 1) related /aimed
- 3) identified/ intervenes

- 2) associated/aids
- 4) decreased/affected

Vocabulary

Concept: idea, thought Somewhat: slightly; to a certain extent; quite Variety: diversity, multiplicity; assortment; kind, sort Commonality: sharing of common features Endeavor: effort, attempt Derive: extract, take from a source Intend: have in mind to do or accomplish, plan; mean Defective: imperfect; deficient, lacking Temporarily: lasting for only a limited period Haphazard: random, irregular; lacking order or direction

iedep.com

Strategies

Understanding vocabulary in context

The context is the setting- the sentence and paragraph- in which a word or phrase appears. The meaning of a word or phrase in a context is its meaning in the particular sentence and paragraph in which it is used. A single word in English can have many different meanings. Its precise meaning always depends on the context in which it is used.

To understand the meaning of a word in context, you can use different types of context clues: your knowledge of structure, punctuation, and the meaning of the other words in the same sentence. In the reading you do, there may not always be context clue to help you. However, you can guess the probable meaning of an unfamiliar word by using your overall understanding of the ideas in the passage as well as your common sense and knowledge of the world.

Structural clues are one type of context clues. Structural clues are certain words, phrases, and grammatical structures that point to the relationship among the various parts of the sentence. These clues help you to understand the meaning of an unfamiliar word by showing how the word relates to the other word and ideas in the sentence. The structural clues below can help you understand vocabulary in context.

Clues: Be; Or; Appositive; Adjective Clause and Phrase; List or Series; Example; Contrast; Punctuation clues; Key words; Word parts

Quality is a much more complicated term than it appears. Dictionary definitions are usually <u>inadequate</u> in helping a quality professional understand the concept. It seems that every quality <u>expert</u> defines quality is a somewhat different way. There are a variety of perspectives that can be taken in defining quality (e.g. customer's perspective, specification-based perspective). Are there commonalities among these definitions? Is anyone definition "more correct" than the others? Is one quality expert "right" and the others "wrong"? Quality professionals constantly debate this question. The editors of Quality Digest say that defining the word "quality" is "no simple endeavor." They asked, in their December 1999 issue, for readers to send them their definitions of quality to be gathered and posted on Quality Digest Online.

A modern definition of quality derives from Juran's "fitness for intended use." This definition basically says that quality is "meeting or <u>exceeding</u> customer expectations." Deming states that the customer's definition of quality is the only one that matters. So, who is the customer? There is a difference between a <u>symptom</u> and a problem. Healthwise, a headache is usually a symptom. The cause of a headache (e.g. drinking too much alcohol, a brain tumor) is the

problem. In business, poor employee <u>morale</u> is usually a symptom (not a problem)--perhaps of poor supervision, inadequate working conditions, etc. High rates of <u>scrap</u> and rework are usually symptoms of a process problem (e.g. defective lot of material, a <u>malfunctioning</u> machine, an inadequately trained operator). In order to have any meaningful and <u>lasting</u> impact, the problem solving process must focus on the problem (root cause) rather than the symptom. Healthwise, an aspirin might temporarily relieve the headache, but the headache will recur because the root cause (tumor) has been ignored. Holding a company picnic will have little lasting impact on employee morale if the cause of poor morale (poor supervision) is ignored. Effective quality professionals use a structured approach to problem solving that is focused on root causes rather than a haphazard or <u>seat-of-the-pants</u> approach.

1-	- The word "inadequate" in the passage is closet in meaning to							
	1. defective	2.	enough	3.	competent	4.	flawless	
2-	The word "expert" in	the	passage means	•				
	1. specialist	2.	master	3.	magnificent	4.	amateur	
3- Which one is NOT the synonym of "exceed"?								
	1. transcend	2.	excel	3.	outstrip	4.	nominate	
4-	"symptom" means:							
	1. indicator	2.	solution	3.	client	4.	disease	
5-	5- The word "morale" in the passage is closet in meaning to							
	1. disease	2.	confidence	3.	ethic	4.	virtue	
6-	The word "scrap" in the passage means							
	1. junk	2.	scribble	3.	scrawl	4.	squiggle	

7- Select the synonym of "lasting" in the line 18:

1. enduring 2. ephemeral 3. ceasing 4. temporary

8- Which one is the best description of "malfunction"?

- 1. Function in a defective manner
- 2. Fail to operate normally
- 3. Function in an unflawed manner
- 4. Both(1) and (2)

9- What is Quality Digest?

- 1. An especial method in QC
- 2. Concept of Quality
- 3. Important point of view
- 4. Kind of publication

10- The phrase "seat-of-the-pants" in last line is closet in meaning to......

- 1. "employing or based on personal experience"
- 2. "in a random manner"
- 3. "based on specified algorithms"
- 4. "scientifically"

Industrial Engineering 86

Statistical process control (SPC) is a method for achieving quality control in manufacturing processes. It is a set methods using statistical tools such as mean, variance, and others to detect whether the process observed is under control. Statistical process control was pioneered by Walter A. Shewhart and taken up by W. Edwards Deming with significant effect by Americans during World War II to improve industrial production. Deming was also <u>instrumental</u> in introducing SPC methods to Japanese industry after that war. Dr. Shewhart created the basis for the control chart and the concept of a state of statistical control by carefully designed experiments. While Dr. Shewhart drew from pure mathematical statistical theories, he understood that data from physical processes never produce a "normal distribution curve" (a Gaussian distribution, also commonly referred to as a "bell curve"). He discovered that observed

variation in manufacturing data did not always behave the same way as data in nature (Brownian motion of particles). Dr. Shewhart concluded that while every process displays variation, some processes display controlled variation that is natural to the process, while others display uncontrolled variation that is not present in the process causal system at all times.

Classical quality control was achieved by observing important properties of the finished product and accept/reject the finished product. As opposed to this, statistical process control uses statistical tools to observe the performance of the production line to predict significant deviations that may result in rejecting products. The underlying assumption in the SPC method is that my production process will produce products whose properties vary slightly from their designed values, even when the production line is running normally, and these variances can be analyzed statistically to control the process. For example, a breakfast cereal packaging line may be designed to fill each cereal box with 500 grams, but some boxes will have slightly more than 500 grams, and some will have slightly less, producing a distribution of net weights. If the production process itself changes (for example, the machines doing the manufacture begin to wear) this distribution can shift or spread out. For example, as its cams and pulleys wear out, the cereal filling machine may start putting more cereal into each box than it was designed to. If this change is allowed to continue unchecked, product may be produced that fall outside the tolerance of the manufacturer or consumer, causing product to be rejected. By using statistical tools, the operator of the production line can discover that a significant change has been made to the production line, by wear and tear or other means, and correct the problem- or even stop production- before producing product outside specification. An example would be the Shewhart control chart and the operator in the aforementioned example plotting the net weight in the Shewhart chart.

1- The main purpose of the first paragraph is to explain

- 1) The work of two SPC analysts
- 2) the historical development of SPC
- 3) Shewhart's contribution to statistics
- 4) a manufacturing process during the 2nd world war

2- The Shewart control chart

- 1) was purely theoretical
- 2) is a type of statistical tool
- 3) Can be considered as a production line
- 4) functions as a table of specifications
- 3- The word "instrumental" in line 5 can best be replaced by.....
- 1) active2) patient3) interested4) influential
- 4- According the passage, SPC method......
 - 1) develops designed values 2) is a quantitative method of processing
 - 3) is a concerned with variation in the4) Employs both controlled andweight of productsuncontrolled observation

5-Statistical process control can contribute to quality control by

- 1) Statistically analyzing variances
- 2) packaging the finished product
- 3) Primarily changing the production process
- 4) increasing the tolerance of the manufacture

6- The word "its" in line 25 refers to

1) machine 2) process 3) distribution 4) manufacture

7-The statistical tools in SPC

1) form a set of methods

- 2) were first introduced by Deming
- 3) were developed to gather similar date in nature
- 4) help continue or discontinue production

8- According to the passage, it is NOT true that.....

- 1) variances fail into two categories
- 2) wear and tear is one source of variation in weight
- 3) net weights should be distributed across boxes
- 4) an increase in weight may dissatisfy the manufacture

$U^{\scriptscriptstyle NIT7}$

Management

Accomplish Efficiently Effectively Comprise Staffing Entity Encompass Manipulation Primary Satisfaction Reasonable Faith Donor Constitute Administrator Appointee Prioritization Deliberate Adversary Actuarial Secure Endeavor bring about permanent preconceived constraint portfolio investment asset

Management in all business and organizational activities is the act of getting people together to accomplish desired goals and objectives using available resources efficiently and effectively. Management comprises planning, organizing, staffing, leading or directing, and controlling an organization (a group of one or more people or entities) or effort for the purpose of accomplishing a goal. Resourcing encompasses the deployment and manipulation of human resources, financial resources, technological resources, and natural resources.

Since organizations can be viewed as systems, management can also be defined as human action, including design, to facilitate the production of useful outcomes from a system. This view opens the opportunity to 'manage' oneself, a pre-requisite to attempting to manage others.

In for-profit work, management has as its primary function the satisfaction of a range of stakeholders. This typically involves making a profit (for the shareholders), creating valued products at a reasonable cost (for customers), and providing rewarding employment opportunities (for employees). In nonprofit management, add the importance of keeping the faith of donors. In most models of management/governance, shareholders vote for the board of directors, and the board then hires senior management. Some organizations have experimented with other methods (such as employee-voting models) of selecting or reviewing managers; but this occurs only very rarely.

In the public sector of countries constituted as representative democracies, voters elect politicians to public office. Such politicians hire many managers and administrators, and in some countries like the United States political appointees lose their jobs on the election of a new president/governor/mayor.

Risk Management

Risk management is the identification, assessment, and prioritization of risks followed by coordinated and economical application of resources to minimize, monitor, and control the probability and/or impact of unfortunate events or to maximize the realization of opportunities. Risks can come from uncertainty in financial markets, project failures (at any phase in development, production, or sustainment life-cycles), legal liabilities, credit risk, accidents, natural causes and disasters as well as deliberate attack from an adversary or events of uncertain root-cause. Several risk management standards have been developed including the Project Management Institute, the National Institute of Science and Technology, actuarial societies, and ISO standards. Methods, definitions and goals vary widely according to whether the risk management method is in the context of project management, security, engineering, industrial processes, financial portfolios, actuarial assessments, or public health and safety.

The strategies to manage risk include transferring the risk to another party, avoiding the risk, reducing the negative effect or probability of the risk, or even accepting some or all of the consequences of a particular risk.

Certain aspects of many of the risk management standards have come under criticism for having no measurable improvement on risk, whether the confidence in estimates and decisions seem to increase.

Project management

Project management is the discipline of planning, organizing, securing and managing resources to bring about the successful completion of specific project goals and objectives.

A project is a temporary endeavor, having a defined beginning and end (usually constrained by date, but can be by funding or deliverables), undertaken to meet unique goals and objectives, usually to bring about beneficial change or added value. The temporary nature of projects stands in contrast to business as usual (or operations), which are repetitive, permanent or semipermanent functional work to produce products or services. In practice, the management of these two systems is often found to be quite different, and as such requires the development of distinct technical skills and the adoption of separate management.

The primary challenge of project management is to achieve all of the project goals and objectives while honoring the preconceived project constraints. Typical constraints are scope, time, and budget. The secondary—and more ambitious—challenge is to optimize the allocation and integration of inputs necessary to meet pre-defined objectives.

Technology management

Question1.Technology Management is set of management that allow organizations to manage its technological fundamentals to createadvantage. Typical concepts used in technology management are technology strategy, technology forecasting, technology roadmapping, technology project portfolio and technology portfolio.

- 1) techniques/financial 2) disciplines/ competitive
- 3) planning/ non-commercial 4) experts/ commercial

Question2.Portfolio managers make decisions about mix and policy, matching investments to objectives, asset allocation for individuals and institutions, and balancing risk against performance.

1) investment 2) strategic 3) managerial 4) functional

Question3.Product development (inbound-focused) and product marketing (outbound-focused) are different yet efforts with the objective of maximizing sales revenues, market

share, and profit margins. The role of product management many activities from strategic to tactical and varies based on the organizational structure of the company.

- 1) contrary/ mixes
- 2) opposing/ crosses
- 3) implementing/integrates
- 4) complementary/ spans

Question4.Staff management is the management of the in an organization. In large organizations, many of these functions are performed by a specialist department such as, , but all line managers are still required to supervise and administer the activities and well-being of the staff that report to them.

- 1) subsidiaries/ Human Factor Engineering
- 2) subordinates/ Personnel or Human resources
- 3) employers/ Enterprise Resource Planning
- 4) acquisition/Staff Acquisition

Vocabulary

Enterprise: company, firm, business Acronym: word formed from the first initials of several words Throwaway: disposable Ambition: aspiration, hope Finance: raise money for; provide with funds, fund, pay for Warehouse: storehouse, depot Combine: unite, join; come together; become one Run off: escape; print, make copies; produce quickly Share: part; portion; quota, allocation Communicate: share or exchange information or ideas Tremendous: very great in numbers, huge, enormous, powerful

Strategy

Making inferences

An inference is a conclusion you can make from the information given in a passage. An inference is an idea that you can reasonably take to be true, based on what the author says. Some inferences can be made from a single sentence. Some inferences are based on a whole paragraph or on the entire passage.

An inference is a "hidden" idea. To make an inference, you must understand an idea that the author does not state directly. To do this you must interpret the information that is stated directly. What the author does not state directly and openly, he or she may *imply* and *suggest* by mentioning certain facts and details. When an author implies something, you must *infer* or *conclude* the meaning based on what author does say.

Enterprise resource planning software or ERP, Forget about planning—it doesn't do much of that—and forget about resource, a throwaway term. But remember the enterprise part. This is ERP's true <u>ambition</u>. It attempts to integrate all departments and functions across a company onto a single computer system that can serve all those different departments' particular needs.

That is a tall order, building a single software program that serves the needs of people in finance as well as it does the people in human resources and in the warehouse. Each of those departments typically has its own computer system optimized for the particular ways that the department does its work. But ERP combines them all together into a single, integrated software program that runs off a single database so that the various departments can more easily share information and communicate with each other.

That integrated approach can have a tremendous payback if companies install the software correctly.

1- It can be inferred from first paragraph that?

- 1. Planning the enterprise is not that important.
- 2. Resource is an essential term in ERP.
- 3. ERP helps to be ambitious.
- 4. Enterprise resource planning doesn't live up to its acronym.

2- The word "ambition" in the passage is closest in the meaning to.....

1. objective 2. recognition 3. identification 4. notion

3- What can be inferred about ERP?

- 1. It is kind of comprehensive software.
- 2. It is limited to each department.
- 3. ERP links all the databases.
- 4. None of the above mentioned.

System Engineering (89)

Over the years the relationship between employer and employee has changed from master and servant to one of employer and employee. Earlier it was a one-sided relationship will employer wielding absolute power to hire and fire employees.

Gradually government and unions intervened to prevent one-sided exploitation by the employer and to wield countervailing power over them. Today the relationship between employer and employee is contractual, reciprocal and mutual. The employee has certain rights and obligations and so does the employer. While the laws, courts and unions have, over the years, limited the rights of management, the rights of employees have been preserved and furthered by managerial indiscretions, laws, courts and unions.

The obligations of the employer are relatively precise and specific whereas those of the employees are imprecise and elastic. The substantive terms of the contract of employment prescribe wages, hours, holidays, etc. in definitive terms. But the obligations of the employee to provide an honest, efficient and faithful service and to obey orders are not easily measurable and therefore application of sanctions against workers for non-fulfillment of obligations often becomes difficult. Also managerial authority and power needs to be accepted by the subordinates. Tolerance to non acceptance of managerial arbitrariness in the exercise of managerial authority can cause further problems.

In any case, in the employment relationship employees expectations become employer's responsibilities and employer's expectations become employees' responsibilities. So, there is

bound to be certain area of friction or dissatisfaction where either party is not able to live up to the other's expectations.

1- According to the passage, defining the obligations of the employee is not easy, because:

- 1) They are not limited and contractual
- 2) They are employers' expectations
- 3) They are not accepted by employer
- 4) They are not measurable

2- According to the passage, "obligations" means:

1) duties 2) rules 3) laws

4) tasks

3- The passage implies that:

- 1) the relationship between employee and employer is like the servant and master yet
- 2) the obligations of the employees are flexible
- 3) the employee's expectations are the same as employer's expectations
- 4) one of the employer's rights is job security

4- According to the passage, "Subordinates" related to:

1) employers2) courts3) employees4) laws

5- What is the best title for the passage?

- 1) The obligations of the employer and employee
- 2) Nature of the employment relationship
- 3) The rights of the employer and employee
- 4) The contract of employment

Industrial Engineering (79)

The public sector's provision of infrastructure has been a major contributor to East Asia's past success. But if rapid modernization is to be sustained, international engagement deepened, and the challenges to rising urbanization met, large infrastructure investments in power, transport, water, and telecommunications are needed. In an increasingly competitive global economic environment, efficient infrastructure services become a more important ingredient to success; infrastructure bottlenecks not only stifle growth, raise costs, and hurt competitiveness but also reduce people's quality of life. East Asia's infrastructure needs are vast- an estimated \$1.2 billion to \$1.5 billion over the next decade. The needs far exceed the financial and managerial capacity of the public sector and can only be met if the private sector's role is increased significantly and infrastructure provision is commercialized. Private sector investment account for at most 10 percent of today's infrastructure investment in East Asia, yet there is growing recognition that private investment should increase to some 30 percent over the medium term. The binding constraint of reaching this goal is the lack of bankable projects. Creating a pool of bankable projects requires a combination of political will and aggressive policy and institutional reforms that will develop competitive market structures, sound regulatory regimes, price reforms, risk mitigation measures, competitive and transparent contracting procedures, and effective financial mechanisms.

- 1- With large infrastructure investments in power, transport, water, and telecommunications can help objectives.
 - 1) 3
 2) 5
 3) 2
 4) 4

2- The passage suggests that to provide for the infrastructure needs in East Asia

1) The investment by the private sector must be raised to 10 recent of today's investments

2) a greater portion should be dedicated to the private sector than is today

- 3) the financial and managerial capacity of the public sector must be enhanced
- 4) none of the above

3- The estimated quantity of investment on East Asia's infrastructure is

- 1) less than the public sector's present capacity
- 2) for a period of ten years
- 3) all to be met by the private sector
- 4) both 2 and 3 above

4- The underlined word "mitigation" in line 16 is closest in meaning to

1) reduction 2) increasing 3) estimation 4) eradication

5- The lack of bankable projects is mentioned as a limitation which

- 1) creates infrastructure bottlenecks
- 2) encourages more investment by the private sector
- 3) will stifle growth, raise costs, and hurt competitiveness
- 4) prevent increased investment by the private sector

U^{NIT 8} Manufacturing Engineering

Convert Modification Assure Determination Specification Flexibility Numerous Subcategories Absorb Effort Application Abstractly Command Storage Via Cam

fed into

Manufacturing engineering is engineering activities involved in the creation and operation of the technical and economic processes that convert raw materials, energy, and purchased items into components for sale to other manufacturers or into end products for sale to the public. Defined in this way, manufacturing engineering includes product design and manufacturing system design as well as operation of the factory. More specifically, manufacturing engineering involves the analysis and modification of product designs so as to assure manufacturability; the design, selection, specification, and optimization of the required equipment, tooling, processes, and operations; and the determination of other technical matters required to make a given product according to the desired volume, timetable, cost, quality level, and other specifications.

Flexible Manufacturing Systems

A flexible manufacturing system (FMS) is a manufacturing system in which there is some amount of flexibility that allows the system to react in the case of changes, whether predicted or unpredicted. This flexibility is generally considered to fall into two categories, which both contain numerous subcategories. The first category, machine flexibility, covers the system's ability to be changed to produce new product types and the ability to change the order of operations executed on a part. The second category is called routing flexibility, which consists of the ability to use multiple machines to perform the same operation on a part, as well as the system's ability to absorb large-scale changes, such as in volume, capacity, or capability. Most FMS systems comprise three main systems. The work machines, which are often automated CNC machines, are connected by a material handling system to optimize parts flow and the central control computer, which controls material movements and machine flow. The main advantages of an FMS are its high flexibility in managing manufacturing resources like time and effort in order to manufacture a new product. The best application of an FMS is found in the production of small sets of products like those from a mass production.

Question1.Computer-aided design (CAD), also known as computer-aided design and (CADD) is the use of computer technology for the process of design and design-documentation.

4) delivery

- 1) devastate
- 2) drafting
- 3) drawing

Question2. Numerical control (NC) refers to the of machine tools that are operated by abstractly programmed commands on a storage medium, as opposed to manually

- 1) discrimination/ translated 2) indiscrimination/transformed
- 3) automation/encoded 4) endue/ eradicated

controlled via handwheels or levers, or mechanically automated via cams alone.

Question3. Computer-aided(CAM) is the use of computer software to control machine tools and related in the manufacturing of workpieces.

- 1) automation/ system 2) machines/cams and pulleys
- 3) manufacturing/products 4) machine tools/ machinery

Vocabulary

Capability: ability, skill

Limitation: bound, restriction; act of limiting; state of being limited *Maintain:* keep in existence, sustain; keep in good condition, preserve *Constraint:* restriction; artificial manner, unnatural manner; force Comprehensive: extensive, including much, large in scope Acquisition: act of acquiring; purchase, something acquired or obtained *Ensure:* make certain; guarantee; make secure *Manpower*: power available from or supplied by human labor Throughout: every part, at every point or moment Achieve: obtain, attain; perform, accomplish; succeed Interactive: acting reciprocally, acting mutually; communicating Environment: surroundings; conditions in which someone or something lives *Ease*: make easier; calm, soothe; free, release Aid: help; assist Requirement: necessity *Eliminate:* remove, get rid of Cognitive: aware, perceptive Sensory: relating to sensation or the senses Excessive: immoderate, exceeding normal bounds, extreme Workload: amount of work to be done *Frequent:* happening often; regular; common, usual Hazard: danger, risk; game of chance Prior: previous, earlier, preceding, former *Refine:* purify, filter, distill; cultivate, *Multidisciplinary:* applying to many different branches of education *Compile:* collect, produce (a collection) by assembling material from other sources. Enhance: increase; intensify; improve; raise the value of *Baseline*: a minimum or starting point used for comparisons

Strategies

Text unity

One of the things which can be helpful in answering reading questions is the ability to predict what is going to come next after a give sentence or part in the passage. Recognition of the main idea will assist to guess what is going to represent next.

For instance, when the main idea of a paragraph is privileges of QC, you expect some items and applications to be continued.

The capabilities and limitations of the system operators and maintainers always place constraints on systems that must be considered during the development process. A comprehensive management and technical strategy for human systems integration must be initiated early in the acquisition process to ensure that human performance, safety, manpower, personnel and training issues be considered throughout the system design and development process. The objective of the human factors engineering critical process is to establish acceptable compatibility between the system and the people who operate, maintain, and support it. To insure system objectives are met and personnel safety is considered, human factors engineering must be integrated into all phases of system engineering: design, manufacture, test, and support.

Human System Integration (HSI) is the systematic use of knowledge to achieve compatibility in the design of interactive systems of people, machines, and environments to ensure their effectiveness, safety, and ease of performance. The term covers all biomedical and psychosocial considerations. It includes, but is not limited to, principles and applications in the areas of human factors engineering, personnel selection, training, life support, job performance aids, and human performance evaluation. Human factors engineering requirements are established to develop effective human-machine interfaces, and minimize or eliminate system characteristics that require extensive cognitive, physical, or sensory skills; require excessive training or workload for intensive tasks; or result in frequent or critical errors or safety/health hazards. The capabilities and limitations of the operator, maintainer, trainer, and other support personnel must be identified prior to program initiation and refined during the development process.

Human factors is a multidisciplinary effort to generate and compile information about human capabilities and limitations and apply that information to equipment, systems, software, facilities, procedures, jobs, environments, training, staffing, and personnel management to produce safe,

comfortable, and effective human performance. When human factors is applied early in the acquisition process, it enhances the probability of increased performance, safety, and productivity; decreased lifecycle staffing and training costs; and become well-integrated into the program's strategy, planning, cost and schedule baselines, and technical tradeoffs. Changes in operational, maintenance or design concepts during the later phases of a project are expensive and entail high-risk program adjustments. Identifying lifecycle costs and human performance components of system operation and maintenance during requirements definition decreases program risks and long-term operations costs.

1- Which one is the main idea of first paragraph?

- 1. Obstacles on systems
- 2. Barriers on staff acquisition
- 3. Introducing ERP
- 4. Introducing targets of human factor engineering

2- According to the second paragraph.....

- 1. HSI is one of the most important sectors of human factors engineering literature.
- 2. HSI is not limited to the human factors engineering literature.
- 3. The capabilities of the staff must be identified posterior to program initiation
- 4. 2&3.

3- According to third paragraph, all the statements are true EXCEPT.....

- 1. Applying human factors engineering enhance safety
- 2. Applying human factors engineering may increase bugs in the systems
- 3. Applying human factors engineering decreased lifecycle staffing and training costs
- 4. 1&2.

System Engineering (86)

Quite frequently manufactured products have unnecessary precision, production operation, or parts. Simple redesign can <u>eliminate</u> these, lowering costs and increasing manufacturability, reliability, and profits. For example, Russian liquid-fuel rocket motors are intentionally designed to permit ugly (though leak-free) welding, to eliminate grinding and finishing operations that do

not help the motor function better. Some Japanese disc brakes have parts tolerance to three millimeters, an easy-to-meet precision. When combined with crude statistical processes controls, this assures that less than one in a million parts will fail to fit. Many vehicle manufactures have active programs to reduce the numbers and types of fasteners in their product, to reduce inventory, tooling and assembly costs.

Another producibility technique is near net shape forming. Often a premium forming process can eliminate hundreds of low-precision machining or- drilling steps. Precision transfer stamping can quickly produce hundreds of high quality parts from generic rolls of steel and aluminum. Die casting is used to produce metal parts from aluminum or sturdy tin alloys (they are often about as strong as mild steels). Plastic injection molding is a powerful technique, especially if the special properties of the part are supplemented with inserts of brass or steel.

When a product incorporates a computer, it replaces many parts with software that fits into a single light-weight, low- power memory part or micro- controller. As computers grow faster, digital signal processing software is beginning to replace many analog electronic circuits for audio and sometimes radio frequency processing. On some printed circuit boards (itself a producibility technique), the conductors are intentionally sized to act as delay lines, resistors, and inductors to reduce the parts count. An important recent innovation was the use of "surface mounted" components. At one stroke, this eliminated the need to drill most holes in a printed circuit board, as well as clip off the leads after soldering. In Japan, it is a standard process to design printed circuit boards of inexpensive phenolic resin and paper, and reduce the number of copper layers to one or two to lower costs without harming specification.

It is becoming increasingly common to consider producibility in the initial stages of product design, a process referred to as design for manufacturability. It is much cheaper to consider these changes during the initial stages of design rather than redesign products after their initial design is complete.

1- Redesign is criticized on the grounds that it

1) may not be cost effective

2) may lead to only simple changes

- 3) eliminates many necessary elements
- 4) increases producibility rather than manufacturability

2- The first producibility technique

- 1) Was limited to rocket motors
- 2) was introduced by Russian engineers
- 3) included the issue of precision in products
- 4) led to only one instance of failure in Japan

3- The word "eliminate" in line 2 means

1) manage 2) remove 3) decrease 4) evaluate

4- The example of Japanese disc brakes shows that

- 1) unnecessary precision can be avoided
- 2) the failure of parts is most likely
- 3) precision is generally easy to meet
- 4) the best degree of tolerance is 3 millimeters

5- According to the passage, the specifications of the product......

- 1) were printed on paper in Japan
- 2) showed the number of copper layers
- 3) explained the process of designing
- 4) did not change despite a decrease in costs

6- The use of tin alloys was reasonable because they......

- 1) increased the speed of die cast 2) were better than mild steels
- 3) resulted in a powerful technique 4) were strong enough to be used

7- According to the passage, it is true that.....

- 1) a micro- controller can replace a computer
- 2) changes should be thought of before redesign
- 3) generic rolls are the result of high quality parts
- 4) most holes were eliminated because of soldering

U^{NIT 9} Maintenance

Satisfactory Inspection Detection Incipient Adjustment Worthwhile Overhaul Proactive Legislation Jurisdiction Whereas Right(v) Adjunct Buffer Interrupt Uptime Deterioration Convenient

Preventive maintenance (PM)

Preventive maintenance (PM) has the following meanings:

- 1. The care and servicing by personnel for the purpose of maintaining equipment and facilities in satisfactory operating condition by providing for systematic inspection, detection, and correction of incipient failures either before they occur or before they develop into major defects.
- 2. Maintenance, including tests, measurements, adjustments, and parts replacement, performed specifically to prevent faults from occurring

Preventive maintenance can be described as maintenance of equipment or systems before fault occurs. It can be divided into two subgroups: Planned maintenance and condition-based maintenance.

The main difference of subgroups is determination of maintenance time, or determination of moment when maintenance should be performed.

While preventive maintenance is generally considered to be worthwhile, there are risks such as equipment failure or human error involved when performing preventive maintenance, just as in any maintenance operation. Preventive maintenance as scheduled overhaul or scheduled replacement provides two of the three proactive failure management policies available to the maintenance engineer. Common methods of determining what Preventive (or other) failure management policies should be applied are; OEM recommendations, requirements of codes and legislation within a jurisdiction, what an "expert" thinks ought to be done, or the maintenance that's already done to similar equipment, and most important measured values and performance indications.

Total productive maintenance (TPM)

Total productive maintenance (TPM) originated in Japan in 1971 as a method for improved machine availability through better utilization of maintenance and production resources.

Whereas in most production settings the operator is not viewed as a member of the maintenance team, in TPM the machine operator is trained to perform many of the day-to-day tasks of simple maintenance and fault-finding. Teams are created that include a technical expert (often an engineer or maintenance technician) as well as operators. In this setting the operators are enabled to understand the machinery and identify potential problems, righting them before they can impact production and by so doing, decrease downtime and reduce costs of production.

TPM is a critical adjunct to lean manufacturing. If machine uptime is not predictable and if process capability is not sustained, the process must keep extra stocks to buffer against this uncertainty and flow through the process will be interrupted. Unreliable uptime is caused by breakdowns or badly performed maintenance. Correct maintenance will allow uptime to improve and speed production through a given area allowing a machine to run at its designed capacity of production.

One way to think of TPM is "deterioration prevention": deterioration is what happens naturally to anything that is not "taken care of". For this reason many people refer to TPM as "total productive manufacturing" or "total process management". TPM is a proactive approach that essentially aims to identify issues as soon as possible and plan to prevent any issues before occurrence. One motto is "zero error, zero work-related accident, and zero loss".

Predictive maintenance (PdM)

Predictive maintenance (PdM) techniques help determine the condition of in-service equipment in order to predict when maintenance should be performed. This approach offers cost savings over routine or time-based preventive maintenance, because tasks are performed only when warranted.

The main value of Predicted Maintenance is to allow convenient scheduling of corrective maintenance, and to prevent unexpected equipment failures. The key is "the right information in the right time". By knowing which equipment that needs maintenance, the maintenance work can be better planned (spare parts, people etc.) and what would had been "unplanned stops" are transformed to shorter and less "planned stops" thus increasing plant availability. Other values are increased equipment life time, increased plant safety, less accidents with negative impact on environment, an optimized spare parts handling, etc.

Question1. Planned Maintenance (PM) is a scheduled service visit carried out by a competent and suitable agent, to ensure that is operating correctly and to therefore avoid any unscheduled breakdown and

- 1) an item of equipment/downtime 2) equipments/uptime
- 3) a number of equipment/downtime 4) the number of equipment/uptime

Question2.Corrective maintenance can be defined as a maintenance task performed to identify, isolate, anda fault so that the failed equipment, machine, or system can be to an operational condition within the tolerances or limits established for in-service operations.

- 1) avoid/repaired 2) rectify / restored
- 3) prevent/recovered 4) predict/transformed

- 1) equipment fails 2) something goes wrong
- 3) it is possible

4) need arises

1) maintenance/life span

- 2) inspection/life cycle
- 3) condition monitoring/ threshold
- 4) adjustment/boundary

Industrial Engineering (78, 90)

Total preventive Maintenance (TPM) is a concept through which plant, machinery, and equipment operators are empowered to maintain continuous production on totally efficient lines. It is a tried and tested way of cutting waste, saving money, and making factories better places to work. It gives operators the knowledge and confidence to manage their own machines. Instead of waiting for a breakdown, then calling the investigate and then eliminate the root causes of machine errors. Also, they work in small teams to achieve continuous improvements to the production lines.

Doug Martin- TPM Manager at DuPont Said:

"We've set a goal to double the shareholder value by our 200th Anniversary in 2002. The only way we will achieve that goal is by improving equipment reliability through focus on the elements of TPM".

Today, within the European Union (EU) alone, over 2 million people are involved in maintenance, and visible costs are estimated at between 125 and 170 billion ECU (European Currency Units).

Industrial Engineering 78:

1- According to the passage, TPM:

1) Totally works on preventive maintenance activities.

2) Continuously operates the plants, machinery, and equipments.

3) Gives more power to plants, machinery and equipment.

4) Maintains production lines at high efficiency and little or interruptions.

1) Saves the money for the workers to work better.

- 2) Makes the production system more economical.
- 3) Is a tool for cutting the disposed material and waste into small pieces.
- 4) None of the above statements are true.

3- Through TPM concept:

- 1) Operators learn to find the main causes of machine failures.
- 2) Operators investigate about how they can eliminate their own operational errors.

3) The root causes of machine errors is due to the elimination of operators (introduction of automation)

4) All of the above statements are correct.

4- The TPM Manager at Du-Pont is in the idea that:

- 1) By the year 2002, Du-Pont will be 200 years old.
- 2) By the year 2002, there will be 200 shareholders in Du-point.
- 3) After 200 years, there will be 2002 shareholders in Du-point.
- 4) By the year 2002, the no. Of shareholders in Du-Pont will be twice as much as before.

5- The TPM Manager at Du-Pont states that:

- 1) Their equipment reliability is now very well improved.
- 2) Their equipment are not reliability at all now, and they need to be improved.
- 3) Real attention on elements of TPM will make them successful.
- 4) Focusing on equipment reliability is the same as focusing on elements of TPM.

6- According to the passage:

- 1) The E.U population is about 2 millions.
- 2) E.U alone spends 125 to 170 billion ECU for visitors to Europe.
- 3) There are 2 million people in Europe who can spend 124 to 170 billion ECU for maintenance cost.

4) There are 2 million people in E.U countries who work in some way on maintenance activities.

1) Makes the operators to work on big maintenance problems.

2) Makes the operators confident to call the maintenance Engineer for any small problem.

3) Makes the maintenance engineers confident to deal directly with small problems.

4) Makes the operators confident to deal with small problems and prevent them from becoming big ones.

Industrial Engineering 90:

1- Through "Total Productive Maintenance" concept:

1) Operators learn to find the main causes of machine failures.

2) The root causes of machine errors is due to the elimination of operators.

3) Operators investigate about how they can eliminate their own operational errors.

4) All of the above.

2- Total Productive Maintenance:

1) totally works on preventive maintenance activities.

2) gives more power to plants, machinery and equipment.

3) continuously operates the plants, machinery and equipment.

4) maintains production lines at high efficiency and little or no interruptions.

3- According to the passage, what is the meaning of "eliminate"?

1) remove

2) modify

3) polish

4) select

U^{NIT 10} Simulation

Imitation Entail Lifelike Insight courses of action engage accessible acquisition approximation assumption fidelity unification loop computational rely (on) suite deterministic derivative securities sophisticated

Simulation is the imitation of some real thing, state of affairs, or process. The act of simulating something generally entails representing certain key characteristics or behaviors of a selected physical or abstract system.

Simulation is used in many contexts, such as simulation of technology for performance optimization, safety engineering, testing, training, education, and video games. Training simulators include flight simulators for training aircraft pilots in order to provide them with a lifelike experience. Simulation is also used for scientific modeling of natural systems or human systems in order to gain insight into their functioning. Simulation can be used to show the eventual real effects of alternative conditions and courses of action. Simulation is also used when the real system cannot be engaged, because it may not be accessible, or it may be dangerous or unacceptable to engage, or it is being designed but not yet built, or it may simply not exist.

74

Key issues in simulation include acquisition of valid source information about the relevant selection of key characteristics and behaviors, the use of simplifying approximations and assumptions within the simulation, and fidelity and validity of the simulation outcomes.

Historically, simulations used in different fields developed largely independently, but 20th century studies of Systems theory and Cybernetics combined with spreading use of computers across all those fields have led to some unification and a more systematic view of the concept. Physical simulation refers to simulation in which physical objects are substituted for the real thing (some circles use the term for computer simulations modeling selected laws of physics, but this article doesn't). These physical objects are often chosen because they are smaller or cheaper than the actual object or system.

Interactive simulation is a special kind of physical simulation, often referred to as a human in the loop simulation, in which physical simulations include human operators, such as in a flight simulator or a driving simulator

Question1. Monte Carlo methods (or Monte Carlo experiments) are a class of computational algorithms that rely on repeated sampling to compute their results. Monte Carlo methods are often used in simulating and mathematical systems. These methods are most suited to calculation by a computer and tend to be used when it is infeasible to compute an exact result with a algorithm.

- 1) deterministic / random/repetitive
- 2) deterministic / physical/ random
- 3) random / deterministic/complementary
- 4) random / physical/ deterministic

Question2. Monte Carlo methods are widely used in engineering for and quantitative probabilistic analysis in process design. The need from the interactive, co-linear and non-linear behavior of typical process simulations

- 1) sensitivity analysis /rises
- 2) sensitivity analysis / arises

3) qualitative/arises

4) qualitative /raises

Question3. Simulation software is based on the process of modeling a realwith a set of mathematical formulas. It is, essentially, a program that allows the user to observe an operation through simulation without actuallythat operation.

1) phenomenon/performing

2) phenomena/designing

3) phenomenon/abdicating

4) phenomena/complementing

Question4. simulations are used to model statistical events such as customers arriving in queues at a bank. By properly arrival probabilities with observed behavior, a model can determine optimal queue count to keep queue wait times at a specified level.

- 1) Discrete event / correlating
- 3) Random numbers/ predicting
- 2) Discreet event/coordinating
- 4) Uncertainty/determining

Question5. are used to model a wide variety of physical phenomena like ballistic trajectories, human respiration, electric motor response, radio frequency data communication, steam turbine power generation etc.

- 1) Discrete events
- 3) Continuous simulators

- 2) Discrete simulators
- 4) simulators

Industrial Engineering (88)

Many problems in financial engineering require numerical evaluation of an integral. Several virtues make simulation popular among practitioners as a methodology for these computations. First, it is easy to apply to many problems. For most derivative securities and financial models, even those that are complicated or high-dimensional, it takes relatively little work to create a simulation algorithm for pricing the derivative under the model. Also, pitfalls in numerical implementation of simulation algorithms are relatively rare. For the most part, a little knowledge and effort go a long way in financial simulations, with some expertise and investment of one's time, one can go further and faster.

The second virtue of simulation is its good performance on high-dimensional problems:

The rate of convergence of a Monte Carlo estimate does not depend on the dimension of the problem. While other numerical integration techniques may have advantage over simulation in various situations, their rates of convergence tend to degrade as the dimension increases. The dimension of the problem is high, for instance, when dealing with models of markets that contain many fundamental sources of risk or with derivative securities that depend in a nontrivial way on prices at many times.

This issue is becoming increasingly important as securities markets and financial risk management become more sophisticated.

A third attraction of simulation is the confidence interval that it provides for the Monte Carlo estimate. This information makes possible an assessment of the quality of the estimate, and of how much more computational effort might be needed in order to produce an estimate of acceptable quality.

1- The passage mainly discusses ____

- 1) the range of effective application of simulation
- 2) the challenges specific to financial simulations
- 3) the advantages of financial simulation methodology
- 4) the use of simulation to handle financial engineering problems

2- which of the following statements is NOT true according to the passage?

- 1) Financial risk management can benefit from the implementation of simulation algorithms.
- 2) Financial simulations require extensive knowledge and expertise.
- 3) Simulation is well suited to high-dimensional problems.
- 4) Simulation is a valuable tool for pricing options.

3- The word "pitfalls" is closest in meaning to _____.

1) conflicts 2) procedures 3) features 4) difficulties

4- Which of the following is NOT discussed as an advantage of simulation in the

passage?

1) The domain of problems to which simulation can be applied

- 2) The use of simulation to handle high-dimensional problems
- 3) the provision of the confidence interval for Monte Carlo methods
- 4) the application of simulation to a variety of financial problems

5- The passage states that simulation makes it possible for the Monte Carlo estimate ____.

1) to assess its quality and increase its acceptability

- 2) to assess the risk of more computational effort
- 3) to improve its performance when dealing with derivative securities
- 4) to compute the values of derivatives over a period of time

U^{NIT 11} Safety Engineering

Probabilistic Proven Perspective Commercial Collaboration Functionality Conducting Mitigate Mode Severity Likelihood Experience Expenditure Consequence Accordance Priority Evaluate Vulnerability

Safety engineering is an applied science strongly related to systems engineering and the subset System Safety Engineering. Safety engineering assures that a system behaves as needed even when components fail.

Ideally, safety-engineers take an early design of a system, analyze it to find what faults can occur, and then propose safety requirements in design specifications up front and changes to existing systems to make the system safer. In an early design stage, often a fail-safe system can be made acceptably safe with a few sensors and some software to read them. Probabilistic fault-tolerant systems can often be made by using more, but smaller and less-expensive pieces of equipment

Far too often, rather than actually influencing the design, safety engineers are assigned to prove that an existing, completed design is safe. If a safety engineer then discovers significant safety problems late in the design process, correcting them can be very expensive. This type of error has the potential to waste large sums of money.

The exception to this conventional approach is the way some large government agencies approach safety engineering from a more proactive and proven process perspective, known as "system safety". The system safety philosophy is to be applied to complex and critical systems,

such as commercial airliners, complex weapon systems, spacecraft, rail and transportation systems, air traffic control system and other complex and safety-critical industrial systems. The proven system safety methods and techniques are to prevent, eliminate and control hazards and risks through designed influences by a collaboration of key engineering disciplines and product teams. Software safety is a fast growing field since modern systems functionality are increasingly being put under control of software. The whole concept of system safety and software safety, as a subset of systems engineering, is to influence safety-critical systems designs by conducting several types of hazard analyses to identify risks and to specify design safety features and procedures to strategically mitigate risk to acceptable levels before the system is certified.

Passage

A failure modes and effects analysis (FMEA) is a procedure in product development and operations management for analysis of potential failure modes within a system for classification by the severity and likelihood of the failures. A successful FMEA activity helps a team to identify potential failure modes based on past experience with similar products or processes, enabling the team to design those failures out of the system with the minimum of effort and resource expenditure, thereby reducing development time and costs. It is widely used in manufacturing industries in various phases of the product life cycle and is now increasingly finding use in the service industry. Failure modes are any errors or defects in a process, design, or item, especially those that affect the customer, and can be potential or actual. Effects analysis refers to studying the consequences of those failures.

1- According to the passage, which statement is NOT true?

- 1) FMEA is aimed to find faults in systems
- 2) FMEA helps to save costs and time
- 3) Records are very important in FMEA
- 4) Decreased development time is a result for FMEA

2- The word "thereby" in the passage means:

1) whereas 2) therefore 3) by means of that 4) in accordance with

80

3- Author believes....

- 1) FMEA is merely used in manufacturing industry
- 2) FMEA is specified to the service industry
- 3) FMEA is widely used in service industry
- 4) FMEA is growing in service industry

4- According to the passage, which statement is true?

- 1) Failure mode is the state of product failure
- 2) Effect analysis is related to customer feedbacks
- 3) Failure mode is detected in design phase
- 4) Effect analysis is sought in processing items

Question1. The outcomes of an FMEA development are actions to prevent or the severity or likelihood of failures, starting with the highest-priority ones. It may be used to evaluate risk management priorities for known threat vulnerabilities.

- 1) reduce/ mitigating 2) preserve/identifying
- 3) maintain/highlighting 4) decrease/decreasing

Question2. A Safety Management Systems (SMS) is intended to act as a framework to allow an organization, as a minimum, to meet its legal obligations under health and safety law.

1) fundamental2) manufacturer3) environmental4) occupational

Question3. is a phenomenon of a system or subsystem in which the system or subsystem does not perform its required or expected function

1) uptime 2) fault 3) failure 4) crackdown

Question4. FMEA is a team-based systematic andapproach for identifying ways that a process or design can fail, why it might fail, and how it can be made safer.

1) statistical 2) proactive 3) discretionary 4) remedial

Nowadays, industrial safety and environmental protection rank alongside that technically optimized manufacturing process. There is a wish to see harmonization of ecology and economy within economically viable production. For the metal working industry this means using cooling lubricant in technologically sound applications while, at the same time, implementing and refining maintenance and recycling concepts.

1- The harmony of ecology and economy of production:

- 1) is a wish
- 3) cannot by- passed

2) has no importance

4) is impossible to reach

2-The technically optimized manufacturing process:

- 1) is only for metal working industry.
- 2) stand in sharp contrast with safety and environmental issues.
- 3) is to be considered on equal rank with safety and environment.
- 4) must be reached considering safety and environment as equally important

3- For the metal working industry the balance in sound application of cooling lubricants and implementation and recycling concepts.

- 1) is a principle to observe in the entire metal industry.
- 2) is the harmony of ecology and economy of production.
- 3) is indicative of equal ranks for process versus safety and environment.
- 4) is special isolated case.

4- According to the passage, "implementing" means:

- 1) using 2) considering 3) marketing 4) protecting 5- The best title for this passage is: 1) maintenance 2) recycling concepts
 - 3) ecology and economy 4) environmental pollution

Industrial Engineering (82)

Theoretically, if an item is to withstand a prescribed stress, making its strength strong enough to withstand three, four, or five times that stress would reduce the number of failures and accidents; that is a structure or container that had a safety factor of 4 would fail half as frequently as one that had a safety factor of 2. In practice, the inadequacies and uncertainties in use of safety led to a refinement known as margin of safety.

A safety factor is expressed as the ratio of strength to stress. Initially, strength was nominal ultimate strength of the part: the average or prescribed value at which it would fail completely. However it was found that the strength of a specific material was not constant but would differ from any of that kind. Difference will occur in the composition of the material involved, manufacturing and assembly, environment, or in usage. As a result, failure will occur when stress becomes greater than strength. Using nominal or prescribed strengths and stresses, normally S/L was made so large there was no failure. Now, minimum strength/ maximum stress may be stipulated. By this means which is not unusual in aerospace system, it is possible to have as safety factor of 1.0 or 1.25 such a safety factor as low as 1.25 would indicate a safety margin of 0.25.

Mark the best choice on your answer sheet:

1- Safety factor may be defined as

- 1) strength divided by stress
- 2) prescribed strength multiplied by a factor of 2,3, or 4
- 3) the ratio of prescribed stress to strength.
- 4) nominal ultimate stress to half the prescribed strength

2- We understand from the passage that if a part is to withstand a prescribed stress

- 1) the safety factor must be at least equal to 1.
- 2) all the parts must be used under similar conditions.
- 3) The prescribed stress must be reduced by half the strength.
- 4) the composition of the material used in similar parts must be given variety.

M.Shayan

3- The variations observed in the strength of parts leading to total failure stem from

•••••

- 1) constant usage conditions
- 2) discrepancies in production processes.
- 3) Variations in the composition of materials
- 4) both 1 and 2

4- The underline "which" (in line 8 paragraph 2) refers to

- 1) failure
- 2) maximum stress
- 3) minimum strength
- 4) stipulating a safety margin

5- The difference between the concept of safety factor and safety margin lies in the fact that

1) the latter cannot be used in aerospace technology while the former can.

2) The latter is the ratio of minimum strength to maximum stress while the former is the ratio of strength to stress

3) the former is the ratio of nominal strength to prescribed stress while the latter is the same ratio multiplied by a constant factor.

4) The former is usually made large enough to cancel any possibility of failure while the latter is reduced to a minimum by a factor of 0.25.

U^{NIT 12} Inventory

Estate Probate Content Furnish Equivalent Stock Accounting Accessibility Oversupply Safeguard Fraud Merchandise Consumable Transaction Fulfillment Prompt Enhance Merchant Accountant Taxation Skew

Inventory means a list compiled for some formal purpose, such as the details of an estate going to probate, or the contents of a house let furnished. This remains the prime meaning in British English. In the USA and Canada the term has developed from a list of goods and materials to the goods and materials themselves, especially those held available in stock by a business; and this has become the primary meaning of the term in North American English, equivalent to the term "stock" in British English. In accounting, inventory or stock is considered an asset.

Inventory control is the supervision of supply, storage and accessibility of items in order to ensure an adequate supply without excessive oversupply.

It can also be referred as internal control - an accounting procedure or system designed to promote efficiency or assure the implementation of a policy or safeguard assets or avoid fraud and error etc.

An inventory control system is a process for managing and locating objects or materials. In common usage, the term may also refer to just the software components.

Modern inventory control systems often rely upon barcodes and RFID tags to provide automatic identification of inventory objects. In an academic study performed at Wal-Mart, RFID reduced Out of Stocks by 30 percent for products selling between 0.1 and 15 units a day. Inventory objects could include any kind of physical asset: merchandise, consumables, fixed assets, circulating tools, library books, or capital equipment. To record an inventory transaction, the system uses a barcode scanner or RFID reader to automatically identify the inventory object, and then collects additional information from the operators via fixed terminals (workstations), or mobile computers.

An **inventory control system** may be used to automate a sales order fulfillment process. Such a system contains a list of order to be filled, and then prompts workers to pick the necessary items, and provides them with packaging and shipping information. an inventory system also manages in and outwards material of hardware.

Real-time inventory control systems may use wireless, mobile terminals to record inventory transactions at the moment they occur. A wireless LAN transmits the transaction information to a central database.

Physical inventory counting and cycle counting are features of many inventory control systems which can enhance the organization.

Passage

When a merchant buys goods from inventory, the value of the inventory account is reduced by the cost of goods sold (COGS). This is simple where the CoG has not varied across those held in stock; but where it has, then an agreed method must be derived to evaluate it. For commodity items that one cannot track individually, accountants must choose a method that fits the nature of the sale. Two popular methods that normally exist are: FIFO and LIFO accounting (first in - first out, last in - first out). FIFO regards the first unit that arrived in inventory as the first one sold. LIFO considers the last unit arriving in inventory as the first one sold. Which method an accountant selects can have a significant effect on net income and book value and, in turn, on taxation. Using LIFO accounting for inventory, a company generally reports lower net income and lower book value, due to the effects of inflation. This generally results in lower taxation.

Due to LIFO's potential to skew inventory value, UK GAAP and IAS have effectively banned LIFO inventory accounting.

1- What is the main idea of the passage?

- 1) Inventory control
- 2) Inventory definition
- 3) Methods in accounting
- 4) FIFO vs. LIFO
- 2- According to the passage, using proposed methods will affect.....
 - 1) Inventory
 - 2) Taxation
 - 3) Production
 - 4) Availability

3- According to the passage, which statement is true?

- 1) Choosing FIFO method will influence net income
- 2) LIFO can have a deviation in representing inventory value
- 3) LIFO leaves inflation out of the impression
- 4) FIFO is a better method in inventory accounting
- 4- According to the passage, is the determinant factor for choosing FIFO or LIFO method.
 - **1-** Inflation
 - 2- Net income
 - 3- Book value
 - 4- CoGs

Question1. Inventory management is primarily about specifying the of stocked goods. It is required at different locations within a facility or within many locations of a supply network to proceed the regular and planned course of production and stock of materials.

- 1- shape and percentage
- 2- quantity and quality
- **3-** inflow and outflow
- 4- number and value

Question2. Inventory appears as a/an..... on an organization's balance sheet because the organization can, in principle, turn it into cash by selling it.

- 1- long-term assets
- 2- current assets
- **3-** accounts receivable
- 4- cash

Question3. inventory is inventory whose potential to be sold at a normal cost has passed or will soon pass. In certain industries it could also mean that the stock is or will soon be to sell.

- 1- safety/infeasible
- 2- out of order/hardly
- **3-** expired/more likely
- 4- distressed/ impossible

Question4. EOQ applies only when demand for a product is over the year and each new order is delivered when inventory reaches zero. There is a fixed cost for each order placed, regardless of the number of units ordered.

- 1- alternative/selective
- 2- continuous/in phase
- **3-** constant/ in full
- **4-** fixed/ continuously

$U^{\text{NIT 13}}$

Industrial Engineering (79)

- 1- In engineering degree courses, the coverage of aspects include such areas as industrial engineering. Management information systems, and principles of economics.
- 1) leadership2) engineering3) supervisory4) management
- 2- Social responsibility and knowledge are prerequisites for anyone working as a scientist.

1) Clear 2) in time 3) up- to- date 4) unprofessional

3- A manufacturing manager his/her plant by separating engineering, accounting, manufacturing and purchasing specialists into different departments.

1) Divide2) program3) organize4) harmonize

4- An alpha ray is a small, high-energy particle given off from the nuclei of creation radioactive atoms

1) are disintegrating 2) as they disintegrate

3) they do disintegrate 4) before they are disintegrated.

5- A man- machine system may consist of one man and one machine, in which the human error may be traced to equipment design, failure of operators, or the design engineer.

1) Poor2) sharp3) costly4) preciseIndustrial Engineering (80)

6- Unless dying products make some unique contribution to the firm's reputation or its product line or can be sold with an unusually high contribution, their production should be <u>terminated</u>.

1) enforced2) endorsed3) enfolded4) ended

7- Quality robot design means that the product is designed so that small variations in production or assembly do not <u>adversely</u> affect the product.

1) Adverbially	2) adventurously
----------------	------------------

3) unfavorably 4) umbilically

8- The CAD system, through a library of symbols and details, helps to ensure <u>adherence</u> to the drafting standards.

1) Fierceness	2) fidelity	3) faithfulness	4) faithlessness
			77/
9- An assembly drawing shows an <u>exploded</u> view of the product.			
1) Parts designed	2) parts assembled	3) parts separated	4) parts integrated

10- Product definition may be rigorous, as in the case of an insurance policy, or casual, as in the case of a haircut.

1) Rigid	2) lag	3) right	4) lax

Industrial Engineering (82)

11- If productivity were considered on the broader basis of getting maximum from the energy, materials, capital, and human effort that go into producing a product, we would for ever higher quality.

1) usage/strive 2) losses/produce

3) assemblage/supply 4) requirements/need

12- Group technology is a dynamic and evolutionary	Which continues to expand its
influence on manufacturing system.	

1) product2) development3) consumption4) manufacturing

13- A free enterprise system depends upon the willingness of to accept the risks involved in

- 1) the people, state
- 2) workers, unionization
- 3) politicians, elections
- 4) businesses, competitions

Industrial Engineering (89)

- 14- Manufacturing Processes, deals with issues which lead to a better of raw materials and energy, integration of design and manufacturing which are requiring the invention of suitable new methods and techniques.
 - 1) consumption-activities

- 2) use-regulations
- 3) utilization-activities 4) fabrication-rules

15- Decision making can be regarded as an outcome of mental & processes leading to the selection of a course of action among several alternatives and provides the to decide the optimized course of action to be taken.

1) hypothetical-environment	2) rigorous-background
3) conventional-opportunity	4) cognitive-ability

16- An operations researcher faced with a new problem is expected to determine which techniques are most given the nature of the system, the goals for improvement, and on time and computing power.

1) appropriate-constraints2) suitable-limitations

3) opportunity-experiences 4) promising-results

17- Systems analysis is the interdisciplinary part of, dealing with analysis of sets of interacting, the systems, often prior to their automation as computer systems, and the interactions within those systems.

1) technology-systems	2) science-entities
-----------------------	---------------------

3) competency-parts 4) skill-tools

1) mathematical-expectations

2) financial-systems

3) operational-cases

4) physical-issues

Industrial Engineering (90)

19- In general, the systematic definition of...... can be defined as the ability of a person or system to perform and maintain its functions in routine, as well as hostile or unexpected circumstances.

1) maintainability- analysis

2) flexibility- environments

3) reliability- circumstances

4) accountability- calculations

20- They have considered the problem of a nonlinear smooth objective function of several variables when the derivatives of the objective function are and when no constraints are specified on the problem's variables.

1) solving- fuzzy2) handling- known

3) optimizing- noticeable 4) minimizing – unavailable

21- Some of the promising directions for elaborating these in the future may be viewed from a framework that links the of artificial intelligence and operations research.

1) issues- future	2) inventions- cases

3) problems- capability 4) innovations- perspectives

22- There is also a need to inspect what has been delivered to organization by its and what has already been produced by the organization.

- 1) acceptance2) suppliers
- 3) procedures 4) imperfection

System Engineering(89)

23- The company insists that all their products are in respect of their quality, specification and look.

1) uniform2) identity3) typical4) actual

24- If for any reason customers do not like the item have bought, they always and get a refund.

1) give it back 2) take it back 3) keep it back 4) hold it back

25- The advantages of working for this company is that all employees themselves as a member of the team.

1) hold2) think3) perceive4) believe

- 1) issue-aims 2) object-limitations
- 3) intention-goals 4) challenge-constraints

26- Development plan document will contain a number of to control the development and use of land, and will set out the design..... and criteria against which planning applications will be considered.

1) standards-issues	2) issues-affairs
3) policies-standards	4) cases-polices

System Engineering(90)

27- management is the application of knowledge, skills, tools, techniques and systems to define, visualize, measure, control, report and improve processes with the goal to meet customer requirements

1 \	1	•
I)	sale-	environments

2) process- profitably

3) engineering- standards

4) maintenance-possibilities

28- The basis of..... is to reduce the errors produced during the manufacturing or service process, increase customer satisfaction, streamline supply chain, aim for modernization of equipment and ensure workers have the highest level of training.

1) TPM- issues

2) PM- activities

3) EFQM- processes 4) TQM- management

29- Strategic is an organization's process of defining its strategy, or direction, and making decisions on allocating its resources to pursue this, including its capital and people.

1) process- issue	2) case- arrangement

3) planning- strategy 4) management- strategy

30- An organizational theorist should carefully consider level assumptions being made in, and is concerned to help and administrators.

1) action- managers	2) reality- individuals
3) theory- managers	4) practice- personnel

31- Taylor is considered the father of management and is credited in the development of the principles like scientific govern how much a worker can produce in a day, the function of management to discover and use these in operation of productive systems.

3) production- regulations 4) traditional- regulations

absenteeism	غيبت
accident rate	··· نرخ تصادف،نرخ وقوع تصادف
accommodate	وفق دادن ، اصلاح کردن ، تطبیق نمودن
account for	ولى دادن، مسئول بودن گزارش دادن، مسئول بودن
	دفاتر حسابدارى
accounting books	
accounting period	دوره های حسابداری
accounts receivable	حساب های دریافتنی
accrue	افزوده شدن، منتج گردیدن، تعلق گرفتن
accuracy	صحت ،درستی
activity	فعاليت ،كار
Activity Relationship	رابطه فعاليت ها
Activity Network Diagram	نمودار شبکه فعالیت ها
activity network	شبکه فعالیت ها
administration	ادارہء کل، مدیریت
aerospace system	سیستم های هوافضا
after-the-fact-information	اطلاعات بعد از فعالیت
airborne aircraft	فضا پیمای هوابرد(انتقال بوسیله هوا)
aisle	راهرو
Aisle Arrangement	چيدمان راهرو
algorithm	الگوريتم
allocation	تخصيص
allowance	بیکاری مجاز
alloy	الياژ
alphanumeric character	الفبا عددى
amenable	تابع، رام شدنی،
amortization cost	هزینه استهلاک (سرمایه و غیره)
analytical techniques	تکنیک های تحلیلی
annual depreciation	استهلاک سالیانه
anthropometric	وابسته به مبحث اندازه گیری بدن انسان
anthropomorphic	شبیه انسان، دارای شکل انسان
antithesis	پادگذاره، ضد و نقیض، تضاد، تناقض
approach	نزدیک شدن ، نظر کردن ،نظر گاه ،
approach	رویکرد ، نگرش
arithmetic procedure	رويه حسابى
articulate	مفصل بندی
Articulated Mechanical System (AMS)	مجموعه اندام های مکانیکی (روبات)
artisan	صنعتگر، صنعتکار، افزارمند
assemblage	عمل سوار کردن (ماشین یاموتور)، جمع اوری،
assemble	مونتاژ ، سوار کردن ، همگذاری
assembly	مونتاژ ، سر هم کردن ، بستن
Assembly Chart	نمودار مونتاژ
assembly line	خط مونتاژ
assessor	ارزياب

accat	
asset	دارایی
assets value	ارزش دارایی ها
assign	تخصيص دادن
Assignable	معین ، مشخص ، قابل تشخیص
assignable cause	انحرافات با دليل
assignment	تخصيص ، گمارش ، ماموريت دادن
assurance	تضمین ، اطمینان ، تعهد ، اعتماد
attentive behavior	رفتار با دقت
attitude survey	بررسی رفتاری
attribute	مشخصه ،ویژگی ،نشان
audit	ممیزی ، بازبینی
Audit Client	متقاضی ممیزی
Audit criteria	معیار ممیزی
Auditee	ممیزی شونده
augment	تکمیل کردن ، زیاد کردن ، گسترده
automaticity	خودکاری، خودبخودی
automation	خودکار سازی ، اتوماسیون ، مجهز کردن به وسایل خودکار
avoidable delay	به وسایل خود دار تأخیر قابل اجتناب
awareness stance	ت نیز دبن بندب حالت آگاهی
axis	محور، قطب، محور تقارن
	موجودىجنسى كه بابت سفارشات
backlog	درانبارموجوداست،
backorder cost	هزينه سفارش تاخير شده
backward scheduling	زمانبندی برگشتی
balance	تراز، تعادل
balance sheet	ترازنامه
balanced line	خط (توليد) متوازن
balancing delay	تأخير تعادلى
bankable	قابل نقل وانتقال بانكى
bar chart	نمودار میلهای
bar stock	ماده اوليه مصرفي
bar-coded document	سند بارکدگذاری شده
base wage rate	حداقل دستمزد، نرخ دستمزد پایه
basic division of work	تقسیم بندی پایه اس کار
basic element	عنصر پایه ای
basic motion	حرکت پایه ای
basic motion time study	مطالعه زمان حرکت پایه ای
batch processing	پردازش دسته ای
batch size	اندازه دسته
batch-type manufacturing	توليد دسته اي
behavioral management	مدیریت رفتاری
behavioral patterns	الگوهای رفتاری
bell curve	الگوهای رفتاری نمودار زنگوله ای

benefit-cost ratio	نسبت هزينه و فايده
bill of material(BOM)	سیاهه مواد، فهرست مواد
binary value	مقدار دودویی
binding constraint	محدوديت الزام آور
bind	متعهدوملزم ساختن، بند، قيد
binomial distribution	توزیع بینم ، توزیع دو جمله ای
bit	یک رقم دودویی، سر مته '
black box	جعبه سیاه
blending stage	مرحله آمیزش
block diagram	نمودار کنده ای ، نمایش کلی مدار
bodily discomfort	ناراحتی جسمی
bonds	اوراق بهادار
bonus	پاداش
book value	ارزش دفتری
boost	ترقى، بالارفتن
boring machine	ماشین سوراخ کاری
boring mill	ماشین سوراخ کاری
bottleneck	گلوگاه
Bottleneck Engineering (BE)	مهندسی گلوگاه
bottom-line	دلیل اصلی
bottom-up decision-making	تصمیم گیری از پائین یه بالا
boundary	مرز، خط سرحدی
brass	برنج الياژ،برنج(فلز)
brawn	نيروى عضلاني
break away	گسیختگی
break even chart	نمودار نقطه سر به سر
break point	نقطه شکست
breakdown	خرابی، شکست ، تفکیک ، تقسیم بندی
breakeven	سر به سر شدن ، یر به یر شدن
break-even point	نقطه سر به سر
budget	بودجه
budget appropriation	۔ تخصیصبودجه، منظور کردن بودجه
budgetary constraint	محدودیت های بودجه ای
buffer	میانگیر ، واسطه ،ذخیره ساز ، بافر
buffer inventory	موجودی ایمنی
Buffer Stock	نو بودی بیسی ذخیرہ ایمنی
bulk loading	ا میرد ایشنی بارگیری مخزن به طور یک جا
burden	بار نیری محرن به طور یک جا بار، بالاسری
business process	
reengineering(BRP)	مهندسی مجدد فرآیند کسب و کار
calibration	تنظيم كردن، كاليبره كردن
capacity	گنجایش، ظرفیت
capacity bottleneck	گلوگاه ظرفیت (ماشین یا ایستگاه کاری که ظرفیت کل سیستم را محدود می کند)

	1
capacity constraints	محدودیت ظرفیت (عامل محدودکننده در گلوگاه ظرفیت)
capital	سرمايه
capital budgeting	بودجه بندى سرمايه
cell	سلول
cell layout	چيدمان سلول
cellular manufacturing	توليد سلولى
changeover	انتقال
chart	نمودار
check study	مطالعه بازنگری(باز مطالعه)
chronological time order	ترتیب زمانی داری تسلسل تاریخی
circumvent	پیش دستی کردن،میانبر زدن
closed-loop MRP	برنامه ریزی نیازمندیهای مواد با حلقه بسته
coarse	ضخيم، زبر، خشن
coding system	سیستم کدگذاری
coin tossing	ی از این از ا
commercial	تجارى
commodity	کالا ، متاع ، جنس
commonalities	اشتراكات
competitiveness	رقابت پذیری، رقابتی بودن
competitor	رقيب
complex whole	کل پیچیدہ
compliance	قبول، اجابت، بر اوردن
component	اجزاء ، سازه
Computer Aided	طراحي به کمک کامپيوتر
Design(CAD)	عراحی به صف میپیوتر
Computer-Aided Manufacturing(CAM)	توليد به کمک کامپيوتر
computerized program	کنترل برنامه کامپیوتری
control	
conceptual design	طراحی مفہومی
concise visualization	تصور موجز
concurrent	همزمان
concurring engineering	مهندسی همزمان (CE)
configuration management	مدیریت پیکربندی
constant element constrained optimization	جزء ثابت
problem	مسئله بهینه سازی با محدودیت
consumption	مصرف، سوختن
contingency	احتمال ، شانس ، احتمال وقوع
continuous stopwatch method	روش زمانگیری متوالی/پیوسته
contract	قرار داد ، پیمان ، مقاطعه کاری
contractor	پیمان کار، مقاطعه کار
contractual	قراردادی ،مقاطعه ای ،ماهده ای ،پیمانی
control chart	نمودار كنترل
control system	سيستم كنترل

conventional turning	تراشکاری معمولی
0	برنامه ریزی محدب(زیر شاخه ای از
convex programming	ریاضیات که مسائل بهینه سازی با توابع
	محدب را بررسی می کند)
cooperative affairs	کارهای تعاونی
coordinate	هماهنگ کردن ، تعدیل کردن ، مختصاتی
coordinated body	جزء هماهنگ
coordination	هماهنگی، همکاری
corporation	شرکت، گروهی از مردم (شرکت یا بنگاه)
cost center	که دارای شخصیت حقوقی باشند مرکز هزینه
cost control	کنترل هزینه
cost of goods sold	ری ری هزینه کالاهای فروخته شده
cost reduction report	ر گزارش کاهش هزینه
cost tradeoff	تهاتر هزينه
costly	کې رور. گران، گزاف
coverage	پوشش، شمول
criteria	شرايط ، معيارها ، ضوابط
criterion	ضابطه، معيار
critical	حرانی
critical path	مسیر بحرانی
critical path method(CPM)	روش مسیر بحرانی
critical program analysis	روس مسیر بعرانی تحلیل برنامه بحرانی
	عطو یک ساختار برای اتصال قطعات
cross member	طولى
cross-functional team	تیم میان کارکردی
cube like	شبيه مكعب
cumulative lead time	ان تدارک تجمعی
customer dissatisfaction	ارضایتی مشتری
cutting speed	سرعت برش
cycle time	زمان سیکل
cycle timing	زمان سنجی سیکل گردش کاری
cylindrical	استوانهای
data acquisition	اکتساب داده ها
data processing	داده پردازی، پردازش داده ها
Data mining	داده کاوی
day rate	نرخ مزد روزانه
day work	کار روز مزد
dead ends	بى پايان
debug	اشکال زدایی کردن
decimal hour stopwatch	ساعت زمانسنجی دهدهی(بر حسب
decimal minute stopwatch	ساعت) ساعت زمانسنجی دهدهی(بر حسب دقیقه)
decision analysis	آنالیز تصمیم گیری
decision theory	تئوری تصمیم گیری

decision variable	
	متغير تصميم
decline decoder	نزول ، کاهش ، کاسته شدن
decoder	رمز گشا، رمز شناس اهدا کردن، اختصاص دادن، وقف کردن
dedicated FMS	اهدا تردن، احتصاص دادن، وقف تردن FMSاختصاصی
dedication	المداء، تخصيص، فداكارى
deductive reasoning	استدلال قیاسی
defective unit	واحد معيوب
deficiency	نقص، کمی، کمبود، کسر، ناکارایی ابسان
degree of flexibility	درجه انعطاف پذیری
degrees of freedom	درجات آزادی
delay	تاخیر ، به تاخیر افتادن
delay allowance	تاخير مجاز
demand	تقاضا ، مطالبه ، خواسته
demarcate	تعیین حدود کردن، نشان گذاردن
departure mechanism	مكانيزم انحراف
deplete	تهی کردن، خالی کردن، به ته رسانیدن
deployment	موضع گیری استراتژیک(نظامیان)
depreciation	استهلاک ، کاهش بها
derivatives	اوراق مشتقه
detailed layout	چیدمان تفصیلی
determinant	تعیین کننده، تصمیم گیرنده، عاجز، جازم
deterministic	قطعی ، غیر احتمالی
deviate	منحرف شدن
deviation	انحراف
dice throwing	پرتاب تاس
Die casting	ريختن فلزات تحت فشار
diesel propulsion	نیروی محرکه دیزلی
differential piecework	كارمزد قطعه اضافى
diffuse	پخش کردن
direct costing	هزینه یابی مستقیم
direct labor	نیروی کار مستقیم
direct material	مواد اوليه مستقيم
direct search methods	روش های جستجوی مستقیم
disassemble	دمونتاژ، پیادہ کردن
discernment	تشخيص، تميز
disciplined process	فرآيند منظم
discrepancy	اختلاف، تفاوت، مورداختلاف
discrete	گسسته ، جدا ، مجزا
discrete event	پیشامد گسسته
dispatch list	ليست ارسال
disposal	ضايعات
1	
dispose	۔ دور ریز(ضایع کردن)

dividing line	مرز جداکننده
dock	بار انداز ، سکو
document	سند ، مدرک ، ملاک
documentation	مستند سازی
dovetail	جفت کردن
doumtime	زمان توقف ، مدت زمانی که کارخانه کار
downtime	نمی کند
draftsman	نقشه کش، طراح، تهیهکننده لوایح قانونی
drill	مته زدن
driving force	نیروی محرکه
drop delivery	ارسال(جابه جایی) نزولی
due dates	سر رسید، موعد مقرر
Earliest Due Date (EDD)	زودترين موعد تحويل
duplex style	سبک مضاعف
duplicating machine	ماشین نسخه برداری
dynamic	پويا
earn	کسب معاش کردن، ،درامد داشتن
earned hour	ساعت بدست آمده
economic justification	توجيه اقتصادى
Economic Order Quantity(EOQ)	مقدار اقتصادی سفارش
economical	اقتصادی، مقرون به صرفه
effectiveness	اثر بخشی
efficiency	کارایی
effort	تقلا، تلاش، كوشش، سعى
effort rating	رتبه بندی تلاش
elapsed time	زمان سپری شده
element	عنصر
elongation	کشیدگی، دراز شدگی
embellished	رایش کردن، ارایش دادن،پیراستن
emit	ساتع كردن
empathy	انتقال فكر، تلقين
employ	به کار گرفتن ، استخدام کردن
employee	کارمند ، کارگر ، استخدام شده ، مستخدم
employer	كارفرما، استخدام كننده
empowerment	تقويت
encoded data	داده های رمزی شده
encoding	رمز گذاری
encompass	دورگرفتن، احاطه کردن
endorsement	صحهگذاردن
enterprise	بنگاه اقتصادی
entity	موجوديت
Entity Relationship Diagram (ERD)	نمودار ارتباط موجوديت ها
equipment	تجهیزات،موارد ضروری

ergonomic	مربوط به مهندسی انسانی ، ارگونومیک ، فاکتورهای انسانی
erosion	فرسایش، سایش، فساد تدریجی، تحلیل
erroneous assumption	فرض نادرست
error-free	ہی خطا
evaluated base rate	نرخ پایه ای تخمینی(برآوردی)
even analysis	
ever-increasing	دائم در حال افزایش
examine	امتحان کردن، بازرسی کردن
excess stock	موجودی مازاد
excessive cost	هزينه بيش از حد
execution	اجرا
executive	مدير اجرايي
expenditure	برامد، هزينه، خرج
Exploded Assembly Drawing	نقشه مونتاژ گسترده
exploit	بهره برداری کردن از،
external element	جزء خارجي
extrusion line	خط عملیات فشار کاری
facilities planning	طراحي تسهيلات
factor comparison	مقايسه فاكتور
failure	شکست ، خرابی ، عیب
Failure Mode And Effect	آنالیز حالات بالقوه خرابی(روشی سیستماتیک برای شناسایی و پیشگیری از
Analysis (FMEA)	وقوع مشکل در محصول و فرآیند آن)
failure rate	نرخ شکست
fair day's work	کار روزانه عادلانه
fatigue	خستگی ، فرسودگی
fatigue allowance	مرخصی خستگی
feasible	عملي ، موجه ، امكان پذير
feasible alternative	گزینه موجه
Feasible Region	منطقه موجه
field	میدان، رشته
film analysis	تحلیل فیلم(بررسی فیلم فریم به فریم عملیات)
financial engineering	مهندسی مالی
finish goods inventory	موجودی کالاهای تمام شده
firm	شرکت ، موسسه
firm horizon	افق برنامه ریزی شرکت
First In, First Out(FIFO)	(سیستم صفِ) اولین ورودی، اولین خروجی
First -pass yield	رو بي (نرخ) خروجي اولين تأييد
Five S(5S)	پنج S ، پنج اصطلاح که با حرف S شروع می شوند و هدف از کاربرد آن ایجاد محیط کاری مناسب برای کنترل دیداری است.
fixed asset	۔ دارائی ثابت

fixed-order system	سيستم سفارش ثابت	
fixture	قید ، فیکسچر	
fleet	ي ي پر ناوگان	
flexibility of manufacturing	انعطاف پذیری ساخت وتولید	
Flexible Manufacturing Systems(FMS)	سيستم توليد انعطاف پذير	
flexible workforce	نیروی کار منعطف	
flow diagram	دیاگرام جریان(دیاگرامی که جریان اطلاعات، مواد و غیره در یک فرآیند را نشان می دهد.)	
flow line configuration	پیکر بندی مسیر جریان	
Flow Process Chart(FPC)	نمودار فرايند جريان	
fluctuation	نوسان، تغيير	
forecast	پیش بینی ، پیش بینی کردن	
foreign element	عنصر بیگانه	
foremen	سردسته	
forming	فرم کاری، شکل دهی	
forum	ميدان، بازار، محل اجتماع عموم	
forward scheduling	زمانبندی روبه جلو	
foundry enterprise	کارخانه گداز فلز	
framework	استخوان بندى، چارچوب	
free enterprise system	نظام اقتصاد ازاد	
freight cost	هزينه كرايه	
frequency	بسامد ، فرکانس	
friction	سایش، اصطکاک	
frustration	محروم سازی ،نا امیدی	
full-blown reality	واقعيت كامل	
function description	شرح وظايف	
futuristic	مربوط به اينده، پيشرو	
gagging equipment	تجهیزات اندازه گیری	
gain sharing	تسهيم دست آورد	
game theory	نظریه بازی ها	
ep.	گانت چارت(نموداری برای برنامه ریزی و	
Gantt chart	پیگیری پروژه ها که در آن محور افقی نشان دهنده عامل زمان و محور عمودی	
Gunti Churt	نشانگر فعالیت های لازم در اجرای پروژه	
	است)	
Gaussian distribution	توزيع نرمال	
generic role	نقش کلی	
Gilberth basic element	عنصر پایه ای گیلبرت	
gradient-based methods	روشهای مبتنی بر گرادیان	
graph theory	تئوری گراف	
grind	کوبیدن، عمل خرد کردن یا اسیاب کردن	
gripper	دارنده، نگاه دارنده	
Group Technology(GT)	تکنولوژی گروهی	
group-tooling device	وسیله شکل دهی گروهی	

growth	ِشد، نمود، روش، افزایش
guaranteed annual wage	ستمزد تضمینی سالیانه
hierarchical level	سطح سلسله مراتبي
high-speed manipulation	کار کردن(با مهارت) سریع السیر
horizontal axis	حور افقی
human factor	بوامل انسانی
human factors engineering	بهندسى عوامل انسانى
human sensory capability	ابلیت حسی انسان
idle time	مان بیکاری
impetus	یروی جنبش، عزم، انگیزه
incentive	گیزه
incentive earning	رآمدهای انگیزشی
incentive environment	حیط های انگیزشی
incentive opportunity	رصت های انگیزشی
incentive pace	ىرعت (عملكرد) انگيزشى
incentive performance	ىملكرد انگيزشى
incentive rate	رخ دستمزد انگیزشی
income statement	ظهارنامه درآمد
incorporate	کی کردن، بهم پیوستن، متحد کردن
incremental analysis	ناليز اضافى
incur	وجب زیاد شدن،متحمل شدن
indexing	ناخص گذاری
indexing mechanism	کانیزم شاخص گذاری
indirect labor	یروی کار غیر مستقیم
indirect material	واد اوليه غير مستقيم
Indoor Air Quality(IAQ)	ئيفيت هواى داخل ساختمان
Industrial Engineer	بهندس صنايع
industrial Engineering	بهندسی صنایع
infant mortality period	وره مرگ و میر کودکان (دوره ابتدایی نروع سیستم که تلفات بالایی دارد و به ن اصطلاحاً دوره «عیب زدایی» هم می نویند)
infinitesimal	ی اندازه خرد، بینهایت کوچک
inflation	ورم
information processing system(IPS)	میستم پردازش اطلاعات
Information Technology(IT)	ن أورى اطلاعات
infrastructure	یدایش، شالوده، سازمان، زیر سازی، یربنا
ingredient	ېزء، جزء ترکيبی
initial cost	ىزينە اوليە
inoperative	ىير عملى، غير موثر
in-process goods	نالاهای در دست اقدام(در حال پردازش)
input	رودى
inspect	ازرسی کردن، رسیدگی کردن
inspection	ازرسی ، بازدید

inspection probe	كاوشگر بازرسى	
installation	نصب، راه اندازی	
instruction card	كارت دستورالعمل	
instrumentation	تجهيزات ،دستگاهها	
insurance	بيمه، حق بيمه، پول بيمه	
integer linear program	برنامه ریزی خطی اعداد صحیح	
integer programming	برنامه ریزی اعداد صحیح	
integrate shop floor system	سیستم سطح یکپارچه کارگاهی	
integrated system	سيستم پکپارچه	
interaction	تعامل ، فعل و انفعال	
interdependent subsystems	زیر سیستم های وابسته	
interface	واصل ، واسطه ، ارتباط	
interference time	زمان تداخل	
internal elements	عناصر داخلی	
internal recycling	بازيافت داخلى	
intersect	از وسط قطع کردن، تقسیم کردن، تقاطع	
introduction	کردن معرفی(اولین مرحله چرخه عمر محصول)	
intuitive process	شهودی	
inventory	موجودی ، دارایی	
inventory as a percent of sales	موجودی به عنوان درصد فروش	
inventory control	کنترل موجودی	
inventory turns	گردش موجودی	
invest	سرمایه گذاری کردن	
investor	سرمايه گذار	
irrigation system	شبکه ابیاری	
iteration	تكرار	
iterative model building	ساخت مدل تکرار شونده	
Jig	هدایت کننده (جیگ)	
job	کار، امر، سمت، شغل، ایوب، مقاطعه کاری کردن، دلالیکردن	
job analysis	تجزیه کار، تحلیل شغل	
job classification	تقسیم بندی مشاغل	
job description	شرح وظایف شغلی	
job enrichment	غنی سازی شغل	
job evaluation	ارزش گذاری شغل	
job lot	ته مانده انبار	
job rotation	گردش شغلی	
job shop	توليد كارگاهي	
job specification	مشخصات شغلى	
job-based pay system	سیستم پرداخت بر مبنای شغل	
joints	اتصالات	
jurisdictional	اداری و قضایی(مربوط به حل اختلافات کارگری)	
Just-In-Time(JIT)	درست به موقع (یک سیستم موجودی	
L		

	I. .
	ژاپنی که معتقد به نگهداری موجودی در انبار نمی باشد)
	کایزن (واژه ژاپنی)، بهبود پیوسته و
	فزاينده يک فعاليت به منظور أفرينش
Kaizen	ارزش بیشتر و مودا (تلفات) کمتر .در
handen	محیط کار به معنی بهبود پیوسته با
	مشارکت همگانی کارکنان اعم از کارگران و مدیران است.
kanban	و مەيران است. سيگنال (واژه ژاپنی)
key milestone	مرحله برجسته ای در یک پروژه
keypunch	ماشين پانچ
labor	نیروی کار
labor cost	هزینه نیروی کار
labor environment	محيط كار
labor productivity	بهره دهی نیروی کار
labor-hour	نفر ساعت نیروی کار
Last In First Out(LIFO)	(سیستم صف) آخرین ورودی، اولین
	خروجی چیدمان ، طرح بندی ، نقشه
layout	چیدمان ، طرح بندی ، نفسه زمان تدارک ،زمان انتظار تا رسیدن
lead time(LT)	محمله سفارش داده شده
leadership	رهبری
lean	ناب
	روش تولیدی است که مزایای تولید
	دستی و تولید انبوه را با یکدیگر تلفیق کسیا تر میرالار ایا سالا
lean manufacturing	کرده و ازقیمت بالای اولی و انعطاف ناپذیری دومی اجتناب می کند و از
	ماشين آلاتي استفاده مي كند كه هم
	خودكار و هم انعطاف پذيرند
	منحنی یادگیری؛ نموداری که به عنوان
learning curve	شاخصی برای توانایی یادگیری در یک ان
leveled time	دوره زمانی می باشد. زمان متوازن شده
leveling	رین سوری سند تسطیح ، هم سطح کردن ، همتراز کردن
lexicographic	الفبايي
liability	استعداد ، شایستگی ، مسئولیت نیازمندی
limiting process	فرآيند محدودكننده
line balance	توازن خط؛خط متوازن
line production	توليد خطى
loading ramps	سطح شیب دار بارگذاری
logic	منطقی
logistic	تهيه و توزيع ، حمل و نقل
logistical subsystems	لجستیکی ،مربوط به لجستیک
long run	دراز مدت
long-term	دراز مدت، طويل المدت
long-term growth	رشد دراز مدت
~~~~~	
loose standards	استاندارد آزاد
	استاندارد آزاد زمان از دست رفته انباشته، موجودی

lot size	اندازه انباشته
lumber	الوار
machine attention time	زمان مراقبت ماشین
machine idle time	زمان بیکاری ماشین
machine interference	دخالت ماشین
machine utilization	-   ۔ ۔ بکارگیری ماشین
machine-controlled time	بالري المشيع زمان كنترل شده ماشين
Machine downtime	زمان خرابی ماشین
machine-hour	رمان حرابی ماسین ساعت-ماشین
	ماشین الات
machinery	
maintainability make to order	نگهداشت پذیری
	تولید سفارشی
make to stock	تولید انبارشی
makeup pay	پرداخت جبرانی
malfunction	بدعمل کردن، خرابی
management	مديريت
management analyst	تحليلگر مديريت
management audit	ممیزی مدیریت
management consultant	مشاور مديريت
management engineering	مهندی مدیریت
management information systems(MIS)	سیستم های اطلاعات مدیریت
man-machine system	سیستم انسان-ماشین
man-made	ساخت بشر
manpower	نيروى انسانى
manual element	عنصر دستی
manual motion	حرکت دستی
manufacturing floor	کف کارگاہ
manufacturing lead time	زمان سر رسید ساخت تولید
manufacturing organization	سازمان ساخت توليد
manufacturing systems	سیستم های ساخت و تولید
marginal	حاشیه ای ، مرزی
marketing	بازار يابى
marketing forecast	پیش بینی بازار
mass production	توليد انبوه
Master Production Schedule(MPS)	زمانبندی اصلی تولید
master schedule	زمانبندی اصلی
material flow	جريان مواد
material handling	جابجایی مواد
Material Requirement Planning(MRP)	برنامه ریزی نیازمندیهای مواد
maturity	بلوغ(مرحله سوم از چرخه عمر محصول)
Maynard Operation	بورمر که کوم را محری کرد. تکنیک توالی عملیات مانیارد
Sequence Technique(MOST) Mean Time Between	زمان متوسط بین خرابی ها
Failure(MTBF)	

Mean Time To	
Failure(MTTF)	زمان متوسط تا اولين خرابي
measured day work	کار روزانه انجام شده(اندازه گیری شده)
memory	حافظه
memotion study	مطالعه حركت أهسته
merit rating	رتبه بندی شایستگی
method	روش
methodology	روش شناسائی ،متدلوژی ،علم اصول ،روش شناسی
methods engineering	مهندسی روشها
methods study	مطالعه روش ها
Methods Time	زمانسنجی روش ها
Measurement(MTM)	
methods training	آموزش روش ها
micromotion study	مطالعه ریز حرکت ها
mild steel	فولاد نرم
milling machine	ماشين تراش
minimum time	حداقل زمان
miscalculate	اشتباه حساب کردن، پیش بینی غلط کردن
model	نمونه، مدل، مدل سازی
modeler	مدلساز
monitor	دیدہ بانی کردن
monograph	تک نگاری
monotony	يكنواختى
Monte Carlo method	روش مونت کارلو
Motion study	مطالعه ی حرکت
multifunction	چند وظیفه ای، چند کاره
multiple activity process chart	نمودار فعاليت-فرآيند چندگانه
multiple piece rate plan	طرح نرخ دستمزد چند قطعه ای
mutual	متقابل، دو جانبه
	شرکتی که بکار خرید سهام شرکتهای
mutual fund	دیگر مبادرت کند(صندوق سرمایه گذاری)
net revenue	درآمد خالص
nominal ultimate	نهایی اسمی
	می این مسلی نام گذاری، کاندید، تعیین، نامزدی (در
nomination	انتخابات)
nonintegrated shop floor system	سیستم سطح کارگاهی غیر یکپارچه
nonlinear	غیر خطی
nonlinear programming	برنامه ریزی غیر خطی
nonprofit organization	سازمان غيرانتفاعي
Non-proliferation	منع گسترش
nonrepetitive	غير تكرارشونده
nonrepetitive production	توليد غير تكرارشونده
Non-value-added	بدون ارزش افزوده

	1
normal element time	زمان شاخص نرمال
normal place	محيط عادى
normal time	زمان عادی
Numerical Control(NC)	کنترل عددی
objective function	تابع هدف
observation	مشاهده، ملاحظه، نظر
observation form	فرم مشاهدات
obsolescence	کھنگی ،اسقاط
off-specification	خارج از محدوده مشخصات(محصول که الزامات را برآورده نمی کند)
off-the-shelf	مواد در دسترس <b>کامپیو تر</b> : محصول سخت افزار یا نرم افزار با تولید انبوه
one-for-one kanaban	کانبان یک به یک
one-of-a-kind	بی نظیر
on-the-job	مشغول به کار؛ ضمن خدمت
operation	عمل ، عملکرد
operation analysis	تحليل عملكرد، عمل كاوي
operation analysis chart	نمودار تحليل عملكرد
Operation Process Chart(OPC)	نمودار فرآيند عمليات
Operations Research(OR)	تحقیق در عملیات
operations sheet	برگه عملیات
operator process chart	نمودار پردازش اپراتور
opportunity cost	هزينه فرصت
optimal	بهين
optimization	بهينەسازى
optimize	بهينهساختن
optimum	بهينه ، مطلوب
optimum product slat	
order point system	سیستم نقطه سفارش
organization	سازمان ، تشکیلات ، سازماندهی
organization chart	نمودار سازمانی
Organizational Breakdown Structure (OBS)	ساختار شکست سازمانی
outline process chart	طرح کلی نقشه عملیات
output	خروجی، برونداد، محصول
overhaul	برای تعمیر پیاده کردن و مجددا "سوار کردن
overhead	ر-ن سرجمع ، بالاسری
overhead cost	هزينه بالاسرى
overtime	اضافه کار
pace rating	رتبه بندی سرعت
packaging sacks	کیسه بسته بندی
pallet fixture	نگهدارنده پالت(چرخ دستی حمل بار)
palletize	روی سکوب بلند قراردادن ،بوسیله سکوب متحرک(کامیون و غیره)چیزی را حمل
	منحر ت( نامیون و غیرہ)چیری را حص

	كردن
paperwork flow chart	نمودار جريان تشريفات اداري
Pareto's law	قانون پارتو
	نمودار پارتو
Pareto Chart	یک توزیع فراوانی(هیستوگرام) برای داده
	های وصفی است که بر اساس گروه دسته بندی شده اند
part and parcel	بندی سنه این جزء لاینفک
part replacement	جایگزینی قطعات
Parts Per Million(PPM)	قسمت در میلیون قسمت
patent department	سازمان ثبت اختراعات
	تشویق کردن، نگهداری کردن،مشتری
patronize	شدن
pedant programming	
percent defective	درصد نقص (خرابی)
performance	عملكرد، اجرا
performance rating	رتبه بندی عملکرد
performance rating factor	فاكتور رتبه بندى عملكرد
performance rating scale	مقیاس رتبه بندی عملکرد
performance standard	استاندارد عملكرد
perpetual	دائمی ، همیشگی ، ابدی
personal allowance	زمان خستگی مجاز فردی
personal time	زمان شخصی
	روش ارزیابی و بازنگری پروژه ها یک تکنیک است که در آن پروژه به
Project Evaluation & Review	یک تکنیک است که در آن پروژه به صورت شبکه ای از وقایع و وظایف
Technique (PERT)	سازماندهی می شود که برای نشان دادن
	وقايع ، فعاليتها و ارتباط آنها از گره و
pharmaceutical	پیکان استفاده می شود . دارویی، وابسته به داروسازی، دارو
piece rate	نرخ دستمزد به ازای هر قطعه
piece rate wage plan	طرح نرخ دستمزد به ازای قطعه
pitch	نصب، استقرار
plan	برنامه
planning horizon	افق برنامه ریزی
plant	کارخانه ، ماشین آلات ، ماشین
plant layout	طراحي كارخانه
pneumatic	بادی، با فشار هوا
point system	سیستم امتیازدهی
poke-yoke	ضد خطا( واژه ژاپنی)
polymer plant	كارخانه پليمر
position	جایگاه، موقعیت، پست سازمانی
postural combination	ترکیب کیفیتی
power loom	کارگاه بافندگی برقی
power plants	نيروگاه توليد برق
predetermined motion study	سیستم زمانسنجی حرکتی از پیش تعیین شده
premium	جايزه، حقالعمل
P. Junum	

preposition	استقرار در محل پیش بینی شده استقرار در محل معین شده
preventive maintenance program	برنامه نگهداری پیشگیرانه
principle of motion economy	اصول اقتصادی حرکت
prismatic part	جزء منشوری ( خطی ، انتقالی ، شیاری)
probability of survival	احتمال بقاء
probability theory	نظريه احتمالات
procedural elements	عناصر مرتبط به رویه
procedure	رويه
process	فرآيند ، پروسه
process chart	نمودار فرآيند
process chart symbols 1. Operation 2. Inspection 3. Transportation 4. Delay	نمادهای نمودار فرآیند ۱. عملیات ۲. بازرسی ۳. حمل و نقل ۴. تاخیر
5. Storage	۵. ذخیره سازی
process engineer	مهندس فرآيند
process layout	چيدمان فرآيند
process oriented	فرآیند گرا
process razing	پيرايش فرآيند
process time	زمان پردازش
processing	پردازش
product	محصول ، فر آور ده ، توليد
product life cycle	چرخه عمر محصول
product mix	ترکیب محصول
product packaging	بسته بندى محصول
production	توليد
production control	كنترل توليد
production Control System(PCS)	سيستم كنترل توليد
production engineering	مهندسی تولید
production planning	برنامه ریزی تولید
production report	گزارش تولید
production response time	زمان پاسخ توليد
productive time	زمان بهره ور
productivity	بهره وری ، فراورش ، سودمندی
Program Evaluation and Review Technique	روش ارزیابی و بازنگری برنامه
project management	مدیریت پروژه فرآیند هدایت فعالیت های یک پروژه با حداقل هزینه ( بودجه مشخص ) و در چهارچوب مدت زمان مشخص
projection	طرح، نقشه کشی
proliferation	گسترش
proposal	طرح پیشنهادی
propulsion	نیروی محرکه، خروج، دفع، پیش راندن

وانی - حرکتی خریدن ، خریداری کردن نستور خرید، سفارش خرید نابع درجه دوم براتور واجد شرایط کنترل کیفیت کنترل کیفی محمین کیفیت کنترل کیفی عملکردی کیفیت درون فرآیندی مف مف مف مف مف مف مف مف مف مف
بستور خرید، سفارش خرید بایع درجه دوم رنامه ریزی غیرخطی پراتور واجد شرایط تئترل کیفیت قص کیفی ستقرار کیفی عملکردی گیفیت درون فرآیندی مف سیستم صف
ابع درجه دوم رنامه ریزی غیرخطی پراتور واجد شرایط کنترل کیفیت قص کیفی ستقرار کیفی عملکردی گسترش کارکرد کیفیت کیفیت درون فرآیندی میف سیستم صف
رنامه ریزی غیرخطی پراتور واجد شرایط نئترل کیفیت مستقرار کیفی عملکردی گسترش کارکرد کیفیت نابل سنجش یا تعیین صف
پراتور واجد شرایط ضمین کیفیت کنترل کیفی قص کیفی ستقرار کیفی عملکردی گسترش کارکرد کیفیت کیفیت درون فرآیندی نابل سنجش یا تعیین سیستم صف
نظمین کیفیت کنترل کیفیت قص کیفی ستقرار کیفی عملکردی گسترش کارکرد کیفیت کیفیت درون فرآیندی ابل سنجش یا تعیین صف
کنترل کیفیت قص کیفی ستقرار کیفی عملکردی گسترش کارکرد کیفیت کیفیت درون فرآیندی نابل سنجش یا تعیین صف
قص کیفی ستقرار کیفی عملکردی گسترش کارکرد کیفیت کیفیت درون فرآیندی ابل سنجش یا تعیین سیستم صف
ستقرار کیفی عملکردی گسترش کارکرد کیفیت کیفیت درون فرآیندی نابل سنجش یا تعیین صف
گسترش کارکرد کیفیت کیفیت درون فرآیندی نابل سنجش یا تعیین سف سیستم صف
لیفیت درون فرآیندی ابل سنجش یا تعیین صف سیستم صف
ابل سنجش یا تعیین سف سیستم صف
مف سیستم صف
سيستم صف
ئئورى صف
نغيير سريع (انطباق)
ساخت و تولید واکنش سریع
نفسه ، طاقچه
دسترسی تصادفی
عنصر تصادفى
دامنه زمانی
وش های رتبه بندی
رخ
کاهش نرخ (تولید)
نثبيت نرخ
میانگین موزون زمان پایه
ِتبه بندی، نرخ گذاری
بطالعه تاخير – نسبت
وجودى مواد خام
رقو زدن
گیرنده، دریافت کننده، وصول کننده
متقابل، عمل متقابل، دوجانبه، دو طرفه
کارمند تازه، نو اموز استخدام کردن،نیروی نازه گرفتن
رگردنده، عود کننده
از توزیع
فزونه ، زاید
محدوديت زائد
ننظيم كننده
چيدمان مجدد
عتبار ، قابليت اطمينان ، قابليت اعتماد ،

remuneration system	سيستم پرداخت حق الزحمه
repetitive	تکراری، مکرر
requirement	نیازمندی ،الزام، نیاز ، احتیاج
requisition	درخواست، تقاضا
resource capacity planning	برنامه ریزی ظرفیت منابع
Resource Leveling	برديد زيري فرديد سبع
rest	باقيمانده، تجديد قوا كردن،
restudy	بازنگری، مطالع مجدد
retail sale	ېرد وري. سطح مېرېد خرده فروشی
retime	زمانسنجی مجدد
retrieval of information	ر بی اطلاعات بازیابی اطلاعات
	بروز در اوردن یا اضافه نمودن به یک
retrofit	سیستم موجود به منظور بهبود ان
revenue	عايدي ، بازده ، سود
reverse	معکوس، پشت، معکوس کردن، برگشتن
rework	دوباره کاری
reworkable	قابل دوباره کاری
risk analysis	تحليل ريسک
risk mitigation	کاهش ریسک
root cause	علت ریشه ای
route	مسير
route sheet	برگ مسیر(ساخت )
routing	مسیرگزینی، مسیریابی
run time	زمان کار
safety engineering	مهندسی ایمنی
safety factor	فاكتور ايمنى
safety margin	حاشیه امن
salary	حقوق ، دستمزد
sales commission	كميسيون حقوق
sales lead time	زمان تدارک فروش
satisfactory performance	عملكرد رضايت بخش
scale model	مدل مقیاسی
scanning	پویش، مرور اجمالی
schedule attainment	دستیابی به (برنامه) زمانبدی
scheduling	زمانبندی
schematic model	مدل قياسى
schematically	بطور طرح یا خلاصه
scope	حوزه
scrap	ضايعات ، قراضه
screening	سرندزنی ،سرند کردن ،سرند،نمایش بر معرب ده تامیندید باندایش
scrutiny	روی پرده تلویزیون ،ازمایش موشکافی، بررسی
segmenting	موسدىنى، بررسى قطعه قطعه كردن
select	انتخاب کردن
self-imposed	بالعالي كردن بر خود تحميل شده
sen-miposeu	بر خود تحمین سده

semi-flow-line	شبه خط جریان
senior executive	مدیر ارشد
sensitivity analysis	تحليل حساسيت
sequence	توالی ، ترتیب
sequential relationship	رابطه ترتيبي
sequential test	آزمایش مداوم
service capacity	ظرفيت خدمت
setup	راه اندازی
setup method	روش راه اندازی
setup reduction	کاهش(زمان) راه اندازی
setup time	زمان راه اندازی
severity	سختی، شدت، سخت گیری، دقت
shared resource	منابع مشاع
shared resource work flow	جریان کار بر اساس منابع مشاع
shareholder	سهم دار، صاحب سهم
Shewhart chart	نمودار شييوهارت
shop floor control	کنترل سطح کارگاہ
shop supervisors	ناظر فروش
short run	کوتاہ مدت
short-cycle	با چرخه کوتاه
shorten	کوتاه کردن، مختصر کردن، کاستن
short-term	کوتاه مدت، مختصر
shutdown	خاموش کردن
simulation	شبیه سازی ، تشبیه
simultaneous engineering	مهندسی همزمان
simultaneous motion (simo)	نمودار حرکت همزمان
chart	
single delivery	زمان ارسال واحد
Single Minute Change of Die(SMED)	تعویق غالب یک دقیقه ای
	شش سیگما یعنی رسیدن به سطحی از
six sigma	کیفیت تولیدات و ارایه ی خدمات که
	خطای فرآیندهای کاری به میزان ۴/۳ در یک میلیون موقعیت کاهش یابد.
skill	مهارت
skill-based pay system	سیستم پرداخت بر اساس مهارت
slag	تفاله، اشغال، تفاله گرفتن از
snapback method	روش زمان سنجی بازگشت به اول
-	تحليل مدار پنهان
	تحلیل مدار پنهان یک ابزار تحلیل نسبتاً
	جدید برای طراحان است که بهطور فزایندهای در سازمانهای تکنولوژیک
	ورایندهای در سارمان های کنونوریک پیشرفته به کار گرفته می شود. مدار پنهان
sneak-circuit analysis	در واقع یک جریان منطقی (لاجیک) در
	مسير پيشبيني نشده درون سيستم است
	که تحت شرایط خاصی میتواند یک عمل نامطلوب را سبب شده یا از یک عمل
	مطلوب جلوگیری کند

soil salinity	میزان شوری خاک
soldering	لحیم کاری
sophistication	مهارت
source inspection technique	تکنیک بازرسی منبع
space utilization	بهره گیری از فضا
span	محدوده، گستردگی، پوشش
spatial configuration	پیکرہ بندیی فضایی
spatial order	
specification	تصريح، تشخيص، ذكر خصوصيات، مشخصات
speed rating	رتبه بندى سرعت
spindle	محور
spinning frame	چهارچوب یا دستگاه نخ تابی
spiral	حلزوني، مارپيچ
spotlight	نورافكن
spreadsheet	صفحه گسترده
staff	کارمندان، کارکنان
staffing	قابل دسترس ساختن افراد براى سازمانها
standard	استاندارد
standard allowance	زمان خستگی استاندارد
standard cost	هزينه استاندارد
standard performance	عملكرد استاندارد
standard practice	کارکرد استاندارد
standard time	زمان استاندارد
standardization	متعارف سازی، همگونی
starting rate	نرخ شروع
static work	کار ایستا
station dwell time	زمان توقف در ایستگاه(کاری)
statistical process control(SPC)	كنترل فرآيند أماري
statistical quality control	كنترل كيفيت أمارى
statistics	امار، ارقام
statistic	آماره
steel	فولاد ، فولادی ، استیل
steelworker	كارگر صنعت فولاد
step bonus	پاداش مضاعف
steward	وكيل خرج، پيشكار، مباشر، ناظر، مباشرت كردن
stifle	خاموش کردن، فرونشاندن
stipulate	خاموش كردن، فرونشاندن
stochastic model	الگوی تصادفی
stock out cost	هزينه كمبود در موجودي
stooping position	
stopwatch	کرونومتر، گام شمار، قدم شمار
storage mode	طرز ذخیرہ سازی

straight-line depreciation	روش استهلاک خط مستقیم
strategy	استراتژی، راهبرد
stratify	چینه چینه کردن، طبقه طبقه کردن
streamline	سادەو موثر كردن
stretch out	کش آوردن زمان (کار)
stuffing	انباشتن
subassembly	قسمت فرعى دستگاه
subordinate	مادون، وابسته، فرعی، پایین تر، زیردست
subsidiary	شركت تابعه، تابعه ،تقويتى
suggestion system	سيستم پيشنهادات
sundry function	کارکرد مختلف
supervision	نظارت، سرپرستی
supplier	تامين كننده ، توليد كننده
supply	عرضه داشتن،تدارک دیدن،
supply chain management(SCM)	مديريت زنجيره تامين
support effectiveness	اثر بخشی حمایتی
survey	پیمایش، زمینه یابی، بازدید کردن، -
	ممیزی کردن، ترکیب کردن، امیختن، ترکیب شدن، هم
synthesize	گذاری کردن
system dynamic	پویایی سیستم
system parameter	پارامتر سیستم
take-home pay	پرداخت کار در منزل
takt (tact) time	زمان دقيق
tall gates	
tapping	ضربه زدن
tax	ماليات
telecommunication	ارتباطات
template	الگو، قالب
temporary rate	نرخ(پرداخت) موقتی
temporary standard	استاندارد موقتى
theory of constraints	تئوری محدودیت ها
threbling	نام واحد( بخش پایه ای) کار
throughput	توان عملیاتی ، بازدہ
throwing dice	تاس ریختن
tight standard	استاندارد محكم
time allowance	زمان بیکاری مجاز
time scale	مقیاس زمان
time span	محدوده زمان
timekeeping	ثبت وقت، نگهداشت وقت
timing	زمانبندی
tolerance	تلرانس ، حد قابل قبول خطا ، تحمل
tool design	طراحي ابزار
toolset	جعبه بزار
tooiset	

torso	پيچ يا تاب خوردن، تاب گشت، خاصيت
total invontory by product	تاب گشت موجودی کل بر اساس محصول
total inventory by product Total Productive	
Maintenance(TPM)	نگهداری فنی با بهره وری کامل
Total Quality Control (TQC)	كنترل كيفيت جامع
Total Quality Management (TQM)	مديريت كيفيت جامع
total revenue	درآمد کل
transportation	ترابری ، حمل و نقل
travel element	نمودار های سفر
TRIZ	واژه TRI2 برگرفته شده از حروف اول کلمات در عبارت روسی زیر می،اشد: Teoriya Resheniya Izobrototelskikh Zadatch که برابر انگلیسی آن عبارت Theory of Inventive Problem Solving مخفف (TIPS است که به معنای نظریه حل ابداعانه مساله می،اشد. این دانش در سراسر جهان تحت عنوان TRI2 شناخته
turuhla da a tina	مىشود.
troubleshooting	رفع عیب ، عیب زدایی ، میانجی گری
true optimum	
turret	برج متحرک ، برج گردان
two-bin system	سیستم سفارش دهی دو ظرفی
ultimate user	کاربر نهایی
unavoidable delay	تأخير غير قابل اجتناب پذير
unavoidable delay allowance	زمان مجاز تأخير غير قابل اجتناب پذير
unconstrained problem	مسئله بدون محدوديت
undulation	نوسان، حرکت
union	اجتماع ، اتحاد
unitary whole	کل یکپارچه
unpacking	باز کردن، بسته بندی را گشودن
upgrading	ارتقأ دادن
upstream work center	مرکز کار بالادستی
useful life	عمر مفید
utility analysis	آنالیز سودمندی
utilization	سودمندی، استفادہ، مصرف، بکاربری
valid	معتبر، صحيح
validate	معتبر ساختن، تاييد اعتبار
validation	اعتبار بخشی ، اعتبار سنجی ، اعتبار ، تصدیق
value added	ارزش افزوده
value analysis	آنالیز ارزش
value stream	جریان ارزش
value-added ratio	نسبت ارزش افزوده
variable cost	هزينه متغير
variable element	عنصر متغير
variable expense	هزينه متغير

variance	واريانس
varnish	وریسی صیقلی کردن
verification	میں بردی بررسی ، تحقیق ، شناسایی،تصدیق
vertical spindle	محور عمودی
visual review system	سیستم مرور بصری
wage	مزد، دستمزد، اجرت،
wage and salary administration	سازمان حقوق و دستمزد
wage curve	منحنى دستمزد
wage differential	تفاوت دستمزد
wage incentive plan	طرح انگیزشی دستمزد
wage rate	نرخ دستمزد
waiting line	صف در حال انتظار
warrant	تضمین کردن، گواهی
wear(v)	فرسوده شدن ، مستهلک شدن ، ساییده
	شدن
wear-out	کهنه و فرسوده شدن(در اثر استعمال)
welding	جوشکاری
white collar	کارمند دفتری
wholesale	عمده فروشی
wizard	فرآیندی برای هدایت کاربران از بین مجموعه ای از سوالات
work cycle	سیکل کاری
work force	نیروی کار
Work In Process(WIP)	کار در حال پردازش
work measurement	اندازه گیری کار
work rotation	گردش شغلی
work simplification	ساده سازی کار
working capital	سرمایه درگیر در کار
working condition	شرایط کاری
workplace	مجيط کار
workstation	ایستگاه کاری
workstation layout	چیدمان ایستگاه کاری
worn-out part	قطعى فرسوده
worst-circuit analysis	تحليل بدترين مدار
yaw	حرکت راست به چپ ،انحراف
yield	ثمر دادن، حاصل
zero-based budgeting	بودجه بندی بر مبنای صفر